Journals in Chemical engineering
Journals in Chemical engineering
The Chemical Engineering collection offers content that combines research with foundational knowledge, practical information, methods and case studies, in a variety of areas, including biochemical engineering, catalysis, filtration & separation, colloids & surface chemistry, electrochemical engineering, energy & transport processes, materials chemistry, metallurgy, process engineering, safety & reliability, sustainable & environmental, to help chemical engineers address the challenges we face today, including climate change, global warming, health and nutrition, and alternative energy.
The Journal of Chemical Thermodynamics
The Journal of Chemical Thermodynamics exists primarily for dissemination of significant new knowledge in experimental equilibrium thermodynamics and transport properties of chemical systems. The defining attributes of The Journal are the quality and relevance of the papers published.The Journal publishes work relating to gases, liquids, solids, polymers, mixtures, solutions and interfaces. Studies on systems with variability, such as biological or bio-based materials, gas hydrates, among others, will also be considered provided these are well characterized and reproducible where possible. Experimental methods should be described in sufficient detail to allow critical assessment of the accuracy claimed.Authors are encouraged to provide physical or chemical interpretations of the results. Articles can contain modelling sections providing representations of data or molecular insights into the properties or transformations studied. Theoretical papers on chemical thermodynamics using molecular theory or modelling are also considered.The Journal welcomes review articles in the field of chemical thermodynamics but prospective authors should first consult one of the Editors concerning the suitability of the proposed review.Contributions of a routine nature or reporting on uncharacterised materials are not accepted.We strongly encourage all authors to use Editorial Manager at the following URL when submitting papers to The Journal of Chemical Thermodynamics: https://www.editoria... Style guide Please consult the Guide for Authors for further details on the requirements for submitting your paper to The Journal of Chemical Thermodynamics. The guidelines described in this document, as well as those listed in the JCT Style Notes, should be carefully adhered to ensure high-quality and rapid publication of your manuscript.- ISSN: 0021-9614

Journal of Aerosol Science
An International JournalFounded in 1970, the Journal of Aerosol Science is the first journal specifically devoted to publishing research on the behavior of suspensions of particles and droplets in a gas, i.e. aerosols. The editors and editorial advisory board consider it the prime vehicle for the publication of original work as well as reviews related to fundamental and applied aerosol research, including aerosol instrumentation. Its content is directed at scientists working in engineering disciplines, as well as physics, chemistry, and environmental sciences. Manuscripts can focus on topics of long-standing interest in aerosol science, as well as emerging areas of interest. Editorial decisions are made based on the perceived quality and thoroughness of the submission, fit within the scope categories noted below, and novelty of the work, but not based upon speculation of the work's short term impact (i.e. perceived number of citations). While the Journal of Aerosol Science does not have any length requirements for submissions, authors are strongly encouraged to make use of online supporting information to describe particularly detailed methods, and to present supplementary results and diagrams which aid readers in understanding the main narrative.The editors specifically welcome submissions of papers describing recent experimental, numerical, and theoretical research related to the following topics. In the cover letter accompanying each submission, authors should identify the single number-letter combination which best classifies their manuscript, and explain why it is a novel contribution in this topic area.1. Fundamental Aerosol Science: a. Transport and Deposition b. Nucleation, Condensation, & Evaporation c. Radiative Absorption and Emission d. Collision Dynamics: Coagulation, Aggregation, & Charging e. Cluster Science; Atomistic Modeling and Measurements f. Aerosolization: Fluidized Beds, Atomization and Spraysg. Resuspension h. Dusty Plasmas & Non-Equilibrium Aerosols i. Population Balance Modeling2. Applied Aerosol Science: a. Aerosol-based Synthesis & Manufacturing b. Control Technology & Filtration c. Lung Deposition & Aerosol Medicine d. Inhalation Toxicology e. Bioaerosols & Aerosol based Disease Transmission f. Nuclear Aerosols g. Industrial Emission h. Combustion (Soot) & High Temperature Aerosols i. Indoor Aerosols3. Instrumentation & Measurement Methods a. Mobility Analysis b. Mass Spectrometry c. Light Scattering and Spectroscopic Techniques d. Novel Inertial Separation Schemes e. Condensation Particle Counter Developments f. Single Particle Trapping Methods g. Improved Data Inversion; Machine Learning h. Low Cost Sensors & Measurement NetworksBeside originality, a very important criterion for acceptance of a submission is its ability to communicate conclusions of general relevance to a given field.There are topics which the journal specifically does not cover, due to adequate coverage in numerous other publications. The Journal of Aerosol Science is not intended to archive data such as environmental/ambien... monitoring measurements, unless new methodologies are involved or broadly relevant new conclusions for aerosol behavior are reached. Work on source apportionment, as well as global & regional climate modeling is better suited to journals with focuses on atmospheric chemistry and air quality. Routine applications of existing instruments and measurement approaches are not considered suitable for the journal. Work on instrumentation must demonstrate a significant advancement or novel implementation of the instrument or method in question. Manuscripts focusing on numerical case studies with widely available computational fluid dynamics software and built-in particle trajectory models are not appropriate for the Journal of Aerosol Science, unless the uniqueness and novelty of the approach employed is clearly evident. Numerical or analytical solutions to aerosol growth models must demonstrate that they are a significant advance over existing approaches and must not contain overly-simplified assumptions rendering them incapable of predicting the behavior of real aerosols.- ISSN: 0021-8502

Powder Technology
An International Journal on the Science and Technology of Wet and Dry Particulate SystemsPowder Technology is an International Journal on the Science and Technology of Wet and Dry Particulate Systems. Powder Technology publishes papers on all aspects of the formation of particles and their characterisation and on the study of systems containing particulate solids. No limitation is imposed on the size of the particles, which may range from nanometre scale, as in pigments or aerosols, to that of mined or quarried materials. The following list of topics is not intended to be comprehensive, but rather to indicate typical subjects which fall within the scope of the journal's interests:Formation and synthesis of particles by precipitation and other methods.Modification of particles by agglomeration, coating, comminution and attrition.Characteri... of the size, shape, surface area, pore structure and strength of particles and agglomerates (including the origins and effects of inter particle forces).Packing, failure, flow and permeability of assemblies of particles.Particle-p... interactions and suspension rheology.Handling and processing operations such as slurry flow, fluidization, pneumatic conveying.Interactio... between particles and their environment, including delivery of particulate products to the body.Applications of particle technology in production of pharmaceuticals, chemicals, foods, pigments, structural, and functional materials and in environmental and energy related matters.For materials-oriented contributions we are looking for articles revealing the effect of particle/powder characteristics (size, morphology and composition, in that order) on material performance or functionality and, ideally, comparison to any industrial standard.Submissions will usually be overseen according to the following breakdown of specialties:L.S. Fan (The Ohio State University, USA) Fluidization, particulates and multiphase flows, particulates reaction engineering, modeling, measurements, and industrial processes and applicationsA. Teleki (Uppsala University, Sweden) Aerosols, nanoparticles, agglomeration, and functional material synthesis and applicationsC.Y. Wu (University of Surrey, UK) Particle characterization, particle mechanics, powder processing and handling, modeling and simulationA.B. Yu (Monash University, Australia) Granular dynamics and particle-fluid flow, particulate/granular systems and bulk solids handling, particle packing and structural analysis, comminution and attrition, material synthesis, process engineering and industrial applicationsJ.S. Curtis (University of California, Davis) Computational fluid dynamics and software development, modeling of particulate flow phenomena, application to granular and multiphase flows, fluid and particle mechanics, fluidization- ISSN: 0032-5910

Journal of Electrostatics
Fundamentals, Applications and HazardsThe Journal of Electrostatics is the leading forum for publishing research findings that advance knowledge in the fundamental science and engineering of electrostatics. We invite submissions in the following areas:Electrostatic charge separation processes: Fundamental science and engineering behind how materials (solid or liquid) accumulate electrostatic charge, by triboelectric, induction, conduction, corona and electrical double layer charging, or other mechanisms. Electrostatic charge dissipation and neutralization. Electrets. Methods to control charging and electrostatic hazards. Static measurement techniques (charge, surface potential, electric field). Triboelectric nanogenerators and energy harvesters.Electrost... manipulation of particles, droplets, and biological cells: Electrostatic forces on particles, including electrophoresis, dielectrophoresis and electrorotation. Applications, including electrostatic precipitators, separators, coating processes, and electrophotography. Electrostatic issues in fluidized beds and other solids handling processes. Biological/medical applications including control of biological cells and pharmaceutical powders. Coupled problems (thermal, flow, stress) with essential contribution of electrostatic phenomena.Electrosta... driven or controlled fluid flow: Corona generated secondary electrohydrodynamic flow. Boundary layer control. Electrohydrodynamic pumping. Electro-rheology. Electrospinning and electrospraying. DC and AC Electroosmosis. Electrowetting. Applications including materials processing, thermal management, and flow control.Electrostati... in the gas phase: Fundamental science of plasmas. Corona and dielectric barrier discharges. Electrical breakdown. Applications of plasma technologies, including environmental remediation of gas and liquid streams. Electrostatic discharges from charged surfaces - fundamentals, prevention, safety issues. Electrostatic phenomena in atmospheres.- ISSN: 0304-3886

International Journal of Multiphase Flow
The International Journal of Multiphase Flow publishes analytical, numerical and experimental articles of lasting interest. The scope of the journal includes all aspects of mass, momentum and energy exchange phenomena among different phases such as occur in disperse flows, gas–liquid and liquid–liquid flows, flows in porous media, boiling, granular flows and others.The journal publishes full papers, brief communications and conference announcements and Express Tracks.Express Track (ExTra) are papers that will be handled by a dedicated editor with a very short turnover time. The main goal of IJMF Express Track is to report significant developments in the field of multiphase flows that deserve to be published in a speedy manner. The first-round reviewing process is typically less than three weeks, and the average time from the submission to final online publication will be within two months. Manuscripts submitted to Express Tracks must maintain the same standard of rigor and quality required of all papers submitted to the Journal.- ISSN: 0301-9322

Journal of Physics and Chemistry of Solids
The Journal of Physics and Chemistry of Solids is a well-established international medium for publication of archival research in condensed matter and materials sciences. Areas of interest broadly include experimental and theoretical research on electronic, magnetic, spectroscopic and structural properties as well as the statistical mechanics and thermodynamics of materials. The focus is on gaining physical and chemical insight into the properties and potential applications of condensed matter systems.Within the broad scope of the journal, beyond regular contributions, the editors have identified submissions in the following areas of physics and chemistry of solids to be of special current interest to the journal:Low-dimensio... systemsExotic states of quantum electron matter including topological phasesEnergy conversion and storageInterfaces, nanoparticles and catalystsFrom time-to-time, the journal publishes Special Issues containing collections of invited articles focused on topical or rapidly developing fields.- ISSN: 0022-3697

Process Safety and Environmental Protection
Publication of the Institution of Chemical Engineers Official Journal of the European Federation of Chemical Engineering: Part BPSEP aims to be the principal international journal for publication of high quality, original papers in the branches of engineering concerned with the safety of industrial processes and the protection of the environment.Papers that deal with new developments in safety or environmental aspects, demonstrating how research results can be used in process engineering design and practice, are particularly encouraged. Experimental or theoretical research work bringing new perspectives to established principles, highlighting unsolved problems or indicating directions for future research will also be considered. The journal is especially interested in contributions that extend the boundaries of traditional engineering as well as in multidisciplinary papers.Papers related to environmental protection must take an integrated pollution control approach, demonstrating clearly that any proposed treatment method does not simply transfer pollution from one environmental medium to another, for example, from air to water or from water to solid waste. All such papers must discuss how any treatment effluents, spent adsorbents, etc., can be treated or disposed of safely, avoiding transfer of pollution to another environmental medium.For environmental protection, papers that are outside the scope are those that lack engineering aspects, including those that:use experimental techniques primarily to prepare and/or characterise various materials without considerations of process engineering design and practice;present primarily laboratory experiments of the effects of different parameters on behaviour of materials and pollutants (e.g. pH, temperature, mass of adsorbent, etc.) without further insights into the implications for engineering design and practice;focus primarily on adsorption models and curve fitting (e.g. Freundlich, Langmuir etc.); andcontain only chemical, physical and/or thermodynamic analyses.Core topic areas:Risk Assessment and Reliability Engineering • Risk assessment, risk management, consequence analysis, and uncertainty quantification. • Supply chain risk management. • Cyber and physical security vulnerability assessment. • Risk assessment of hydrogen-based technologies. • Human reliability analysis (HRA) and human-machine interface (HMI). • Reliability predictions of integrated systems and high-temperature power electronics. • Integrity management and reliability, availability and maintainability (RAM).Technical Safety and Loss Prevention • Fire and gas detection. • Firewater systems. • Functional safety and safety integrity levels (SIL) • Layer of protection analysis (LOPA) • Bowtie analysis. • Emergency response • HAZOP and other hazard/risk identification techniques.Modelling • Modelling liquid, gaseous, and two-phase releases and dispersion. • Consequence modelling, including: fire, explosion, toxic, eco-toxic effects and projectile impacts. • Methods, including computational fluid dynamics (CFD). • Accident investigation and modelling.Chemical Toxicity and Exposure Assessment • Toxic releases and exposure assessment. • Process plant health issues.Process Pipelines, Storage and Security • Process pipelines security and terrorism. • Pipeline leak detection and measurement and corrosion assessment. • Carbon capture and storage (CCS) and CO2 transport.Fire and Explosion • Fire, combustion, and explosion phenomena. • Dust explosions. • Fire and blast protection and survivability.Human Factors in Design and Management • HSE performance measurement including leading and lagging indicators. • Human and organizational factors in safety cases. • Human performance optimization by design. • SIMOPS (simultaneous operations). • Situational awareness. • Communications and risk control systems. • Resilience engineering. • Technical assurance and workforce training.Inherent Safety and Inherently Safer Design • Hazard identification • Design and development of new processes and equipment. • Methodologies for ranking inherent safety. • Retrofitting inherently safer solutions and upgrading existing plant for improved safety.Nuclear Safety • Waste disposal. • Design for decommissioning. • Passively safe reactor designs. • Nuclear reactor protective and monitoring systems.Reaction Hazards • Chemical thermal stability and thermal reaction hazards. • Influence of impurities on reaction hazards. • Development of reactivity hazard index ranking tools. • Runaway reactions, including detection and mitigation. • Compatibility/reacti... of chemicals involved in a chemical process.Industrial Hazards and Safety Cases • Major accident hazards • ALARP and cost-benefit analysis. • Industrial safety cases.Incident investigations and case histories • Case histories of incidents and lessons learned integration into design and operations. • Technical analysis of incidents. • Computational modelling to simulate actual incidents • Use of incidents in training and improvement of safety performance • Incident investigation methodologies • Incident databases and their applications.Air pollution prevention and treatment • Methods and technologies for prevention and treatment of air pollution • Air dispersion modelling • Prediction and mitigation of air pollution incidents • Health impacts from air pollutionResource and waste management • Recovery and recycling of materials and products • Energy from waste and alternative resources • Waste minimisation • Waste treatment technologies • Waste management: systems and processes for energy and material recovery and waste treatment; disposal • Landfill and waste repository design, operation and management • Land remediation and recoveryWater pollution prevention and treatment • Industrial, pure and ultrapure water production • Municipal and industrial effluent treatment • Potable water treatment • Sludge processing, energy recovery and disposal • Mitigation of water pollution incidents • Water pollution dispersion modelling • Health impacts from water pollutionFor more information on the IChemE journals published in partnership with Elsevier and to find out about some of the top research published in the journals, please see this page: https://www.elsevier...- ISSN: 0957-5820

Journal of Non-Crystalline Solids
The Journal of Non-Crystalline Solids publishes review articles, research papers, and Letters to the Editor. The journal publishes articles on amorphous and glassy materials, including inorganic, organic, polymeric, hybrid, and metallic systems. Papers on partially glassy materials, such as glass-ceramics and glass-matrix composites, and papers involving the liquid state are also included in so far as the properties of the liquid are relevant for glass formation. Submissions on chemical, electronic, optical and mechanical properties of glasses, amorphous semiconductors and metals, sol-gel materials, the liquid state of these solids and the processes by which they are formed are particularly welcomed.In all cases, the papers must demonstrate both novelty and importance to the field by way of significant advances in understanding or application of non-crystalline materials. In the case of Letters to the Editor, a compelling case must also be made for expedited handling.The journal publishes topics including: glass, amorphous, non-crystalline, vitreous, glass-ceramic, glass-matrix composite, glass-forming liquid.Please see our Guide for Authors for information on article submission. If you require any further information or help, please visit our Support CenterSupport Center.- ISSN: 0022-3093
