Nanotechnology Safety, Second Edition outlines the safety, regulatory, and environmental issues related to nanotechnology by industry, offering guidelines in assessing the risks and discussing the legal and social-economical issues involved with current safety regulations. This new edition is fully revised and updated, providing in-depth information on new and current nanomaterials, their industrial applications, toxicity levels, and protections systems in various fields. This valuable resource remains an indispensable resource for academia and industries, covering detailed information on recent processes and nanosystems. It provides engineers, scientists, teachers, students, technicians, and policymakers with a general guide and information for future studies and manufacturing of nanomaterials.The usage of nanosystems, nanomaterials, nano-devices, etc. permeates all aspects of society. Cancer targeting and curing nanosystems are used in the biomedical and pharmaceutical industries, as are lightweight energy absorbing or blast-proof nanohybrid materials in the aerospace, automotive, marine industries, and high efficiency energy harvesting nanomaterials, etc.
Principles of Multiple-Liquid Separation Systems: Interaction, Application and Advancement describes the basic principles and advancements of multiple-liquid separation systems in downstream processing. Several important elements are included, such as the fundamental process and mechanisms of the multiple-liquid separation system, key principles of the interaction between different solvents and phase components, applications, and green solvents for the separation system. Furthermore, the book gives insights in commercializing this separation technique to industrial scale and making the process environmentally and economically sustainable. The book also presents constructive critics of this separation technique for both past and the latest findings.
Surface Science of Adsorbents and Nanoadsorbents, Volume 34: Properties and Applications in Environmental Remediation presents a unique collection of timely information on the surface science of adsorbents and nanoadsorbents. The book offers a perfect source to document developments and innovations, ranging from materials development and characterization of properties, to applications that encompass the enhancement of sorption, degradation processes, and their usage for the removal of different pollutants, including heavy metals, dyes and pesticides, etc. It is written for post-graduate students, scientists in academia and industry, chemical engineers, and water-quality monitoring agencies working in water treatment, efficient materials, nanomaterials development and quality control.
Nanofiber Filter Technologies for Filtration of Submicron Aerosols and Nanoaerosols covers the nanoaerosols (less than 100 nanometers) to larger submicron aerosols due mostly to pollution, which are present in high number concentration in our surroundings. People are breathing these nanoaerosols daily without being aware of it. Airborne viruses from flu to coronaviruses are also nanoaerosols. During the COVID-19 pandemic, it took a long time for health authorities and the General Public to recognize the airborne transmission mode of the virus. This leads to inadequate protection and ineffective virus control strategies resulting in high infection and death rates. The book cites evidence and observations pointing to the airborne transmission mode of the coronavirus. It also discusses different filtration technologies using nanofibers to capture these aerosols for short-term filtration, where aerosols are trapped in the filter (depth filtration), and long-term filtration, where aerosols are trapped in the growing filter cake (cake filtration). This book provides a good understanding on how nanofibers, which is of size 1/1000 times that of a normal human hair, can effectively filter these tiny aerosols. NFT, organized in four sections – fundamentals, deep understanding, technologies, and application, covering comprehensively on the subject, is a valuable resource for undergraduates and graduates, engineers, researchers and practitioners in related industries.
Colloidal Foundations of Nanoscience, Second Edition explores the theory and concepts of colloid chemistry and its applications to nanoscience and nanotechnology. The book provides the essential conceptual and methodological tools to approach nano-research issues. The authors’ expertise in colloid science will contribute to the understanding of basic issues involved in research. Each chapter covers a classical subject of colloid science in simple and straightforward terms, addressing its relevance to nanoscience before introducing case studies. Sections cover colloids rheology, electrokinetics, nanoparticle tracking analysis (NTA), bio-layer interferometry, and the treatment of inter-particle interactions and colloidal stability.
Encapsulation of Active Molecules and Their Delivery System covers the key methods of preparation of encapsulation, as well as release mechanisms and their applications in food, biotechnology, metal protection, drug delivery, and micronutrients delivery in agriculture. The book also provides real-life examples of applications in food and other industries. Sections encompasses (i) Synthesis and characterization methods of micro- and nanocarriers as the delivery systems, (ii) Up-to-date encapsulation techniques in the areas of pharmaceuticals, nutraceuticals and corrosion, (iii) The release methods of the encapsulated materials, and (iv) Industry perspectives, including scale up of the processes.
Advanced Low-Cost Separation Techniques in Interface Science, Volume 30 helps scientists and researchers in academia and industry gain expert knowledge on how to use separation techniques at minimal cost and energy usage. It handles a broad range of highly relevant topics, including modern flotation techniques, low-cost materials in liquid-and gas-phase adsorption, new trends in molecular imprinting, graphenes in separation, nanobubbles and biopolymers in interface science, the reuse of biomaterials, green techniques for wastewaters, and modeling in environmental interfaces. The book shows that these techniques can be both attractive for both research and industrial purposes. It is intended for chemical engineers working in wastewater treatment industries, membrane industries, pharmaceutical industries, textile or tanneries industries, hybrid-topic industries and energy industries.
Nanocomposite Structures and Dispersions deals with the preparation of gelled, branched and crosslinked nanostructured polymers in the solution free radical polymerization and controlled/living radical polymerization and polymer and composite nanoparticles and nanostructures in disperse systems, the kinetics of direct and inverse disperse polymerizations (microemulsion, miniemulsion, emulsion, dispersion and suspension polymerization), the bottom-up approach building of functionalized nanoparticles, modelling of radical microemulsion polymerization, the characterization of traditional and non-traditional polymer dispersions, the collective properties of nanomaterials and their (bio)applications.This book is designed to bridge that gap and offers several unique features. First, it is written as an introduction to and survey of nanomaterials with a careful balance between basics and advanced topics. Thus, it is suitable for both beginners and experts, including graduate and upper-level undergraduate students. Second, it strives to balance the colloidal aspects of nanomaterials with physical principles. Third, the book highlights nanomaterial based architectures including composite or hybrid conjugates rather than only isolated nanoparticles. A number of ligands have been utilized to biodecorate the polymer and composite nanocarriers. Finally, the book provides an in depth discussion of important examples of reaction mechanisms of bottom-up building of functionalized nanoparticles, or potential applications of nanoarchitectures, ranging from physical to chemical and biological systems.
Theory of Electrophoresis and Diffusiophoresis of Highly Charged Colloidal Particles discusses the electrophoretic and diffusiophoretic motions of various colloidal entities, such as rigid particles, liquid droplets, gas bubbles, and porous particles, focusing on the motion-deterring double-layer polarization effect pertinent to highly charged particles, with the lowly charged ones serving as the limiting cases. Boundary effects such as those from a cylindrical pore, a solid plane, or an air-water interface are analyzed as well for the electrophoretic motion of the various particles considered. Dynamic electrophoresis is also explored and treated.The contents are suitable for researchers, graduate students, or senior college students with some basic background of colloid science and transport phenomena. As there is no closed-form analytical formula in general for the situation of highly charged particles, the results are presented with extensive figures and plots as well as tables under various electrokinetic situations of interest to facilitate the possible use of interested readers.
Charge and Energy Storage in Electrical Double Layers presents the basic scientific concepts and implementation of procedures devised to obtain capacitive energy from changes in the potential of electrical double layers when the salinity of solutions is changed. Capacitive deionization— the closely connected reciprocal process—is also considered. The book covers the fundamentals of electrical double layers and ions transport in porous media, the description of promising techniques of energy extraction, and the practical problems involved in each. It is written for scientists in academia and industry, and for graduate students working in supercapacitors, capacitive mixing and deionization.