Pharmaceutical Engineering: A Primer for Advanced Process Development provides a comprehensive, engineering-focused description of pharmaceutical dosage form process development and manufacturing. This volume introduces the most commonly used manufacturing processes for pharmaceutical dosage forms and addresses critical formulation and process parameters that influence drug product process performance and product quality.This is supplemented with detailed descriptions of engineering models as well as tools that can be used to support their development and verification (such as process analytical technology (PAT)) as well as the appropriate utilization of process and equipment knowledge. Typical scale-up challenges inspired by real industrial examples will be presented as well as a review of the latest correlations, theories and models that can form the basis for science-based scale-ups and transfers.
Micro Chemical Engineering and Technology focuses on the development, basic principles, characteristics, and advantages of micro chemical technology. The book summarizes the basic laws of micro-scale single-phase flow, the micro-scale mixing process, and the enhancement of micro-scale mixing performance. It introduces gas-liquid, liquid-liquid, and gas-liquid-liquid micro-dispersion equipment and dispersion law, micro-scale heat/mass transfer performance, as well as homogeneous and heterogeneous micro-scale reactions, micro-scale absorption, extraction, and reaction processes enhancement technology.For the application of micro chemical technology in the area of material interpretation, nano material preparation technology, fiber material preparation technology and special structure material preparation technology are introduced. Final content describes typical cases of industrial applications of gas-liquid absorption micro chemical equipment, liquid-liquid extraction micro chemical equipment, and chemical synthesis micro chemical equipment.
Sono-Hybrid Advanced Oxidation Processes for Water and Wastewater Treatment presents the latest technological advances research in sono-hybrid advanced oxidation processes (AOPs), including an array of cutting-edge water treatments with depth analysis of mechanisms, viable applications, and the advantages and disadvantages of each processes. The book expands on, and illustrates, the principles and consequences of ultrasonic irradiation in liquids, which is an essential component in understanding the degradation mechanisms in sono-hybrid AOPs. This will be a valuable and effective reference for students, researchers, academics, and professionals working in water and wastewater treatment.
Machine Learning Tools for Chemical Engineering: Methodologies and Applications explores the integration of Machine Learning (ML) techniques within the chemical engineering domain. This book highlights the precision, speed, and flexibility of ML solutions in addressing complex challenges that traditional methods struggle with. It offers both practical tools and a theoretical framework, combining knowledge modeling, representation, and management tailored to the unique needs of chemical engineering. Beyond the introduction of ML, the book delves into philosophies such as knowledge modeling, knowledge representation, search and inference, and knowledge extraction and management.It is an invaluable resource for graduate students, researchers, educators, and industry professionals aiming to optimize and innovate in chemical processes through ML applications.
High Integrity Systems and Safety Management in Hazardous Industries, Second Edition serves as an overview of best practices as applied to high integrity systems, including their design, maintenance, regulation, and detailed guidance surrounding safety management processes. Across three parts, this book introduces current, key themes for all engineering managers of high-hazard plants, including aging plants, cybersecurity, crisis management, corporate social responsibility, and the significance of local culture to operational safety.This book uses real-world examples and a multidisciplinary approach to safety case management to bridge the disciplinary gap and help readers understand the latest advice and technology underpinning high integrity systems and safety management. It will be an invaluable guide for industry professionals, researchers, and students at graduate level or above working or researching in hazardous industries.
Harnessing Automation and Machine Learning for Resource Recovery and Value Creation. From Waste to Value provides a comprehensive understanding of how automation and machine learning technologies can be used to convert waste into valuable resources. The book gives insight in the opportunities offered by automation and machine learning technologies in waste management and how they can help address the challenges associated with waste management and to discuss the benefits and potential of automation technologies. It examines the potential of machine learning algorithms in analyzing waste management data, identifying patterns, predicting future waste generation, and optimizing waste management processes. Moreover, the book showcases case studies from different industries and regions, highlighting the revolutionary applications of automation and machine learning in waste management. Harnessing Automation and Machine Learning for Resource Recovery and Value Creation. From Waste to Value is an indispensable resource for researchers, waste management professionals, policymakers interested in learning more about how automation and machine learning can contribute to waste management and the creation of a sustainable future.
Sustainable Design through Process Integration: Fundamentals and Applications to Industrial Pollution Prevention, Resource Conservation, and Profitability Enhancement, Third Edition provides authoritative, comprehensive, and easy-to-follow coverage of the fundamental concepts and practical techniques on the use of process integration to maximize the efficiency and sustainability in industrial processes. Sections cover new information on the inclusion of sustainability objectives within different front-end loading stages of design, carbon management and monetization, design of renewable energy systems and integration with existing infrastructure, incorporation of process safety in design, resilience principles and design approaches, modular design, industrial symbiosis, and open-ended mini projects on sustainable design.
Advances in Process Control with Real Applications presents various advanced controllers, including the formulation, design, and implementation of various advanced control strategies for a wide variety of processes. These strategies include generalized predictive control with and without constraints; linear and nonlinear model predictive control; dynamic matrix control; nonlinear control, such as generic model control, globally linearizing control, and nonlinear internal model control; optimal and optimizing control; inferential control; intelligent control based on fuzzy reasoning and neural networks; and controllers based on stochastic and evolutionary optimization.This book will be highly beneficial to students, researchers, and industry professionals working in process design, process monitoring, process systems engineering, process operations and control, and related areas.
Higee Chemical Reaction Engineering systematically discusses the fundamentals, principles, and methods of molecular mixing and reaction process intensification. The book demonstrates the implementation approach, process, and effectiveness of Higee chemical reaction engineering through novel industrial case studies that help industrial technicians select reaction intensification technology route more scientifically. Sections cover the innovation and development process of Higee chemical reaction engineering, hydrodynamics behavior in Higee reactors, equipment design principles and methods, multiphase reaction of liquid-liquid, gas-liquid, gas-solid, gas-liquid-solid and reactive crystallization process intensification principles and effectiveness.Higee Chemical Reaction Engineering is a systematic summary of several national award and key projects, such as the State Technological Innovation Award, State Science and Technology Advancement Award, National Natural Science Foundation of China, National key R&D Program of China, National ‘‘863’’ Program of China, National ‘‘973’’ Program of China, and also some international cooperation.
Microinterfacial Mass Transfer Intensification provides new and updated technical information, along with basic theory. The book covers several representative industrial application cases and can be used as a reference for scholars, engineers, students, and technicians in oil refining, petrochemical, fine chemical, coal chemical, chemical and biochemical pharmacy, food processing, waste gas and wastewater treatment, and other pan-chemical manufacturing.