Untethered Small-Scale Robots for Biomedical Applications introduces the principle, design, fabrication and application of small-scale robots for biomedical applications. Robots in the scale of nanometer, micrometer and millimeter are described in detail, along with their impact on the field of biomedical engineering. The selected examples of robots across different scales are of the most essential and innovative designs in a small-scale robot with various application settings for biomechanics characterization, drug delivery and surgical procedure. The representative robots represented operate robustly and safely in complex physiological environments where they have a transformative impact in bioengineering and healthcare. This book will lead the audience to the field of small-scale robots through the description of the physics in the small scale, design and fabrication of small-scale robots, and how these robots may impact the future of biomedical studies and minimally-invasive surgical procedures.
Robotic Cell Manipulation introduces up-to-date research to realize this new theme of medical robotics. The book is organized in three levels: operation tools (e.g., optical tweezers, microneedles, dielectrophoresis, electromagnetic devices, and microfluidic chips), manipulation types (e.g., microinjection, transportation, rotation fusion, adhesion, separation, etc.), and potential medical applications (e.g., micro-surgery, biopsy, gene editing, cancer treatment, cell-cell interactions, etc.). The technology involves different fields such as robotics, automation, imaging, microfluidics, mechanics, materials, biology and medical sciences. The book provides systematic knowledge on the subject, covering a wide range of basic concepts, theories, methodology, experiments, case studies and potential medical applications. It will enable readers to promptly conduct a systematic review of research and become an essential reference for many new and experienced researchers entering this unique field.
Learning Control: Applications in Robotics and Complex Dynamical Systems provides a foundational understanding of control theory while also introducing exciting cutting-edge technologies in the field of learning-based control. State-of-the-art techniques involving machine learning and artificial intelligence (AI) are covered, as are foundational control theories and more established techniques such as adaptive learning control, reinforcement learning control, impedance control, and deep reinforcement control. Each chapter includes case studies and real-world applications in robotics, AI, aircraft and other vehicles and complex dynamical systems. Computational methods for control systems, particularly those used for developing AI and other machine learning techniques, are also discussed at length.
This book, the first in the Woodhead Publishing Reviews: Mechanical Engineering Series, is a collection of high quality articles (full research articles, review articles and cases studies) with a special emphasis on research and development in mechatronics and manufacturing engineering. Mechatronics is the blending of mechanical, electronic, and computer engineering into an integrated design. Today, mechatronics has a significant and increasing impact on engineering with emphasis on the design, development and operation of manufacturing engineering systems. The main objective of this interdisciplinary engineering field is the study of automata from an engineering perspective, thinking on the design of products and manufacturing processes and systems. Mechatronics and manufacturing systems are well established and executed within a great number of industries including aircraft, automotive and aerospace industries; machine tools, moulds and dies product manufacturing, computers, electronics, semiconductor and communications, and biomedical.
Mechatronics for Safety, Security and Dependability in a New Era contains selected leading papers from the International Conference on Machine Automation 2004, the work of researchers from USA, Japan, China and Europe. The topics covered include: manufacturing systems such as CAD/CAM, machining and, human factors in manufacturing; robotics in relation to sensors and actuators, new control technology and, measuring and monitoring; the application of new technologies in connection with wireless communication, human behavior analysis and welfare. Mechatronics has been rapidly developing as an important area that affects all areas of society from industrial robots, automobiles, electrical appliances, computers and consumer goods etc. It also plays a role in safety recovery, such as for rescue tasks after disasters, destruction of hazardous and abandoned weapons and the restoration of polluted environments. The increasing need for safe, secure and dependable technology means that the advancement of mechatronics plays an essential role in the development of products and systems. This book provides an insight into developments in essential new methodologies and tools to design and to build machines to achieve this.
Mechatronics is a core subject for engineers, combining elements of mechanical and electronic engineering into the development of computer-controlled mechanical devices such as DVD players or anti-lock braking systems. This book is the most comprehensive text available for both mechanical and electrical engineering students and will enable them to engage fully with all stages of mechatronic system design. It offers broader and more integrated coverage than other books in the field with practical examples, case studies and exercises throughout and an Instructor's Manual. A further key feature of the book is its integrated coverage of programming the PIC microcontroller, and the use of MATLAB and Simulink programming and modelling, along with code files for downloading from the accompanying website.
Accessible to all readers, including students of secondary school and amateur technology enthusiasts, Robotics, Mechatronics, and Artificial Intelligence simplifies the process of finding basic circuits to perform simple tasks, such as how to control a DC or step motor, and provides instruction on creating moving robotic parts, such as an "eye" or an "ear." Though many companies offer kits for project construction, most experimenters want to design and build their own robots and other creatures specific to their needs and goals. With this new book by Newton Braga, hobbyists and experimenters around the world will be able to decide what skills they want to feature in a project and then choose the right "building blocks" to create the ideal results. In the past few years the technology of robotics, mechatronics, and artificial intelligence has exploded, leaving many people with the desire but not the means to build their own projects. The author's fascination with and expertise in the exciting field of robotics is demonstrated by the range of simple to complex project blocks he provides, which are designed to benefit both novice and experienced robotics enthusiasts. The common components and technology featured in the project blocks are especially beneficial to readers who need practical solutions that can be implemented easily by their own hands, without incorporating expensive, complicated technology.
Mechatronics, a synergistic combination of mechanical, electronic and computing engineering technologies, is a truly multidisciplinary approach to engineering. New products based on mechatronic principles are demonstrating reduced mechanical complexity, increased performance and often previously impossible capabilities. This book contains the papers presented at the UK Mechatronics Forum's 6th International Conference, held in Skövde, Sweden, in September 1998. Many of these high-quality papers illustrate the tremendous influence of mechatronics on such areas as manufacturing machinery, automotive engineering, textiles manufacture, robotics, and real-time control and vision systems. There are also papers describing developments in sensors, actuators, control and data processing techniques, such as fuzzy logic and neural networks, all of which have practical application to mechatronic systems.
Mechatronics is the fusion of mechanics and electronics in the design of intelligent machines. This textbook is concerned with the concepts and techniques of artificial intelligence needed for the design of machines with advanced intelligent behaviour. It explores the topics of pattern recognition, neural networks, scheduling, reasoning, fuzzy logic, rule-based systems, machine learning, control and computer vision.This student guide shows how fifty years of research into artificial intelligence (AI) have borne fruit in the design of better and more intelligent machines. The twin objectives of the text are: to explain the theory of the mainstream ideas of AI and to show how these ideas can be applied in practical engineering situations.
Mechatronics is the fusion of mechanics and electronics in the design of intelligent machines. Such machines now play an important role in consumer products, transport systems, manufacturing and the service sector. This book sets out the fundamentals of mechatronics and the engineering concepts and techniques that underpin the subject: planning, search techniques, sensors, actuators, control systems and architectures.This student guide discusses the building blocks of mechatronic systems in terms of the subsystems for perception, cognition and execution, as a framework for designing intelligent machines such as video cameras, robots, and automatic guided vehicles.