Skip to main content

Books in Artificial intelligence

Our AI collection covers machine learning, natural language processing, robotics, and intelligent systems. Showcasing the latest algorithms, theoretical foundations, and real-world applications, these titles support researchers, practitioners, and students in advancing AI technologies. Emphasizing ethical considerations, explainability, and innovation, the content addresses challenges in automation, data analysis, and decision-making. This comprehensive portfolio fosters breakthroughs that shape the future of intelligent systems and their societal impact.

  • Robotics for Intervention in Healthcare

    From Technology to Clinical Practice
    • 1st Edition
    • Françoise J Siepel
    • English
    Robotics for Intervention in Healthcare: From Technology to Clinical Practice bridges the gap between deep-core robotic intervention technology and clinical aspects, including content that is appropriate for physicians and clinicians. The book gives insights on the importance of connectivity in early stages, thoroughly addressing which aspects are important to improve the innovation chain.
  • Autonomous Vehicle Safety Solutions

    Foundations, Technologies, and Prospects for the Future
    • 1st Edition
    • Aparna Kumari
    • English
    Autonomous Vehicle Safety Solutions: Foundations, Technologies, and Prospects for the Future addresses the dynamically evolving state of the art that traverses and brings together automotive engineering, electronics engineering, and computer science. Its technical overview of smart vehicles' capabilities, propelled by headway in artificial intelligence and sensor technologies, enables in-depth understanding of the safety-assurance complexities that guide their design and operation.The comprehensive volume distinguishes itself for its treatment of several exciting, emerging opportunities and trends, including machine learning algorithms, V2X connectivity, and cybersecurity. Up-to-date applications are featured through practical examples and expert insights, bringing additional value to a discourse which underscores the critical need for ongoing safety advancements and adaptability in the fast-moving context of autonomous driving systems, with their related implications on sustainability and society as a whole.The outcome is a cornerstone resource for academia and industry alike that encourages further transformative, interdisciplinary investigations to bring safety solutions to maturity and subsequent rigorous testing for validation standards to be defined, thus realizing, in a future not distant from now, a scenario where self-driving vehicles can co-exist seamlessly with traditional modes of transportation and also integrate reliably, efficiently, and without risks within the larger infrastructure.
  • Digital Twins

    Core Principles and AI Integration
    • 1st Edition
    • Bedir Tekinerdogan + 1 more
    • English
    Digital Twins: Core Principles, System Engineering, and AI Integration provides a comprehensive overview of digital twin technology, a cutting-edge innovation that bridges the physical and digital worlds. The book addresses common challenges such as data integration, security, scalability, and the alignment of digital twin models with actual physical processes. After presenting core concepts of digital twins for software engineering, the book discusses integration with advanced digital solutions such as AI, IoT, Cloud computing, Big Data Analytics, and Extended Reality (XR). Next, the authors provide readers with a thorough presentation of digital twins' applications in a variety of settings and industry/research topics.Finally, the book concludes with a discussion of challenges and solutions, along with future trends in digital twins research and development. As digital twin technology evolves, its integration with various advanced digital solutions is becoming essential for achieving real-time insights and autonomous decision-making. Challenges include understanding the interoperability of these technologies, managing data complexity, ensuring security, and optimizing for low-latency environments.
  • Digital Supply Chain Transformation

    Implementing Technology, Analytics, and Data-Driven Solutions
    • 1st Edition
    • Vinaytosh Mishra
    • English
    Digital Supply Chain Transformation: Implementing Technology, Analytics, and Data-Driven Solutions delves into the intricate world of supply chain management, emphasizing the role of digital transformation in modern supply chains. Through a blend of theoretical learning and practical applications, readers will gain a deep understanding of foundational supply chain principles while exploring emerging trends and technologies reshaping the industry. Topics such as system dynamics modelling, machine learning, artificial intelligence, and end-to-end visibility are explored in-depth, equipping readers with the tools and knowledge needed to excel in the rapidly evolving landscape of supply chain management. Readers will learn how comprehend core principles and elements of supply chain management and its pivotal role in businesses and industries, recognize the significance of digital transformation in supply chains, understand the tools, technologies, and strategies essential for a successful transformation, evaluate the importance of end-to-end supply chain visibility, employ methods and technologies to enhance this visibility in practical scenarios, and apply system dynamics modeling techniques to address complex supply chain problems to optimize supply chain processes, and much more.
  • Advances in Multimodal Large Language Models for Healthcare

    Methods and Applications
    • 1st Edition
    • Hari Mohan Pandey + 4 more
    • English
    Advances in Multimodal Large Language Models for Healthcare: Methods and Applications provides valuable insights on Large Language Models in healthcare applications for researchers, academics, and practitioners. The book explains key concepts, including artificial intelligence, machine learning, deep learning, and the evolution of neural networks and transformer models. It then covers generative AI and LLMs for a wide spectrum of healthcare applications, including mental health, clinical decision support, interactive system design, and sensitive analysis. Readers will find this to be a valuable deep dive into the emergent intersection of LLMs and health care, with guidance into applications, technical and programming methods, and more.Although LLMs have shown some promising results in the healthcare sector, numerous challenges need to be addressed before they can be used in patient care. The two key issues with the adoption of LLMs regarding healthcare settings are reliability, transparency, interpretation of results and bias (data and algorithm) management. Unless properly and adequately validated, there may be incorrect medical information provided by the LLM-based systems, which can lead to misdiagnosis or hazardous treatment errors. At this point, LLMs have not only been used for decision making or documentation, they have also proven to be useful in patient engagement through QA systems, medical chatbots, and virtual healthcare.
  • Artificial Intelligence in Brain Disorders

    Innovations in Diagnosis and Treatment
    • 1st Edition
    • Pranav Kumar Prabhakar + 3 more
    • English
    Artificial Intelligence in Brain Disorders: Innovations in Diagnosis and Treatment focuses on the utilization of AI and machine learning to enhance current practices in the diagnosis and treatment of neurological disorders. Each chapter provides in-depth exploration of specific areas where AI can improve existing methodologies, offering practical guidance, case studies, and research findings that can be directly applied in the field. It explains the application of AI in diagnosing and treating major neurological illnesses and showcases the potential of AI in predicting diseases such as epilepsy and neurodegenerative disorders.As such, this book offers a detailed overview of AI and machine learning techniques relevant to neurological research.
  • Artificial Intelligence Applications in Emerging Healthcare Technologies

    • 1st Edition
    • Miguel Antonio Wister Ovando + 2 more
    • English
    Artificial Intelligence Applications in Emerging Healthcare Technologies presents the latest advances and state-of-the-art methods and applications of computer science and emerging AI technologies in health and medicine. It explores the impact of artificial intelligence (AI) in healthcare for medical decision-making and data analysis, tackling topics such as cloud computing, cybersecurity, the internet of things, natural language processing, virtual health, data science applied to healthcare, personalized medicine, imaging, diagnosis, drug discovery, and diseases, among others. It is a great resource for researchers and students to learn how machine learning algorithms and other data science techniques have been implemented to solve healthcare-related problems. Chapters present adaptations or improvements on previous models and algorithms to process data from different sources. Other chapters investigate new formulations for the optimization of known procedures and algorithms. Finally, all chapters use experimental methods to study problems of interest in healthcare.
  • Deep Learning Assessment of Neurological Imaging

    • 1st Edition
    • Tripti Goel + 3 more
    • English
    Deep Learning Assessment of Neurological Imaging provides an introduction to deep learning structures and pre-processing methods for detecting MRI anomalies. It also provides a comprehensive account of deep learning research on MRI images for Alzheimer's disease, Parkinson's disease, and schizophrenia, and a discussion on current research issues and future objectives. The book is a valuable resource to guide new entrants in the field to make a meaningful impact in their development efforts. The book concludes with a brief overview of the problems discussed and potential future advancements in the field.
  • AI-Driven Urban Planning

    Shaping the Future of Cities
    • 1st Edition
    • Zhong-Ren Peng
    • English
    AI-Driven Urban Planning: Shaping the Future of Cities presents a comprehensive guide to the transformative potential of artificial intelligence in urban planning. This book equips readers with the knowledge to harness data, analytics, and AI for creating sustainable, equitable, and livable urban environments. Exploring diverse applications—from understanding human mobility patterns to enhancing disaster response strategies and optimizing design processes—the book offers practical projects and illustrates how AI is shaping contemporary urban landscapes. By addressing both theoretical and practical dimensions, this resource aims to empower students, professionals, and policymakers with a holistic understanding of Urban Planning AI.It is organized into five parts, each tackling crucial aspects of Urban Planning AI. It first introduces core concepts, types, mechanisms, and ethical considerations surrounding AI. Part II then discusses the history of computer applications in urban and regional planning. Part III focuses on AI Applications in Urban Planning, addressing critical domains such as transportation, environmental, housing, economic, participatory, and health and safety planning. Part IV tackles challenges and ethical considerations, emphasizing equity, transparency, and data-related issues. Lastly, Part V explores future pathways of urban planning AI, discussing current trends, future visions, and interdisciplinary approaches essential for effective governance and policymaking.
  • Federated Learning

    Foundations and Applications
    • 1st Edition
    • Rajkumar Buyya + 2 more
    • English
    Federated Learning: Foundations and Applications provides a comprehensive guide to the foundations, architectures, systems, security, privacy, and applications of federated learning. Sections cover fundamental concepts, including machine learning, deep learning, centralized learning, and distributed learning processes. The book then progresses to coverage of the architectures, algorithms, and system models of Federated Learning, as well as security, privacy, and energy-efficiency techniques. Finally, the book presents various applications of Federated Learning through real-world case studies, illustrating both centralized and decentralized Federated Learning.Federated Learning has become an increasingly important machine learning technique because it introduces local data analysis within clients and requires exchange of only model parameters between clients and servers, hence the addition of this new release is ideal for those interested in the topics presented.