Climate Change, Community Response, and Resilience: Insight for Socio-Ecological Sustainability, Volume Six presents a fundamental theoretical framework for understanding how community resilience and risk assessment affect climate change adaptation behavior. This framework is based on a 26-chapter theoretical and empirical examination that includes pioneer projects from various regions that illustrate the relationship between theory and practice, reflect a paradigm shift in climate change, community response, and resilience, and focus on these important aspects from a sectoral perspective. Climate change, ecological consequences and resilience are then discussed in the final section. Members of the Royal Meteorological Society are eligible for a 35% discount on all Developments in Weather and Climate Science series titles. See the RMetS member dashboard for the discount code.
Acoustic Emission Signal Analysis and Damage Mode Identification of Composite Wind Turbine Blades covers both the underlying theory and various techniques for effective structural monitoring of composite wind turbine blades via acoustic emission signal analysis, helping readers solve critical problems such as noise elimination, defect detection, damage mode identification, and more. Author Pengfei Liu introduces techniques for identifying and analyzing progressive failure under tension, delamination, damage localization, adhesive composite joint failure, and other degradation phenomena, outlining methods such as time-difference, wavelet, machine learning, and more including combined methods. The disadvantages and advantages of using each method are covered as are techniques for different blade-lengths and various blade substructures. Piezoelectric sensors are discussed as is experimental analysis of damage source localization. The book also takes great lengths to let readers know when techniques and concepts discussed can be applied to composite materials and structures beyond just wind turbine blades.
Advanced Ceramic Coatings for Emerging Applications covers new developments in automotive, construction, electronic, space and defense industries. The book is one of four volumes that together provide a comprehensive resource in the field of Advanced Ceramic Coatings, also including titles covering fundamentals, manufacturing and classification, energy and biomedical applications. These books will be extremely useful for academic and industrial researchers and practicing engineers who need to find reliable and up-to-date information about recent progresses and new developments in the field of advanced ceramic coatings. These books will also be of value to early career scientists providing background knowledge to the field. Smart ceramic coatings containing multifunctional components are now finding application in transportation and automotive industries, in electronics, and energy, sectors, in aerospace and defense, and in industrial goods and healthcare. Their wide application and stability in harsh environments are only possible due to the stability of the inorganic components that are used in ceramic coatings.
Micro Fluidization: Fundamentals and Applications provides background and history on micro fluidized bed research and development, summarizes and analyzes the hydrodynamic characteristics of gas-solid micro fluidized beds, and delves into areas such as research results of delayed onsets of minimum, bubbling and slugging fluidization regimes, as well as of the advanced transitions to turbulent and fast fluidization regimes. Based on these results, the wall effects – the key mechanism resulting in the unique behavior of micro fluidization – are analyzed. Other sections discuss gas and solid mixing characteristics in terms of gas residence time distribution, gas backmixing, and solids mixing. Final sections focus on presentations of the so-called micro fluidized bed reaction analyzer (MFBRA) – a powerful tool for catalyst screening, process development, optimization of reaction parameters, studies of reaction mechanism and kinetics, among many other purposes. The book describes, in detail, the MFBRA’s system design characteristics, analytic methodologies and various applications in thermochemical and catalytic reaction analysis.
Classical data envelopment analysis (DEA) models use crisp data to measure the inputs and outputs of a given system. In cases such as manufacturing systems, production processes, service systems, etc., the inputs and outputs may be complex and difficult to measure with classical DEA models. Crisp input and output data are fundamentally indispensable in the conventional DEA models. If these models contain complex uncertain data, then they will become more important and practical for decision makers.Uncertainty in Data Envelopment Analysis introduces methods to investigate uncertain data in DEA models, providing a deeper look into two types of uncertain DEA methods, fuzzy DEA and belief degree-based uncertainty DEA, which are based on uncertain measures. These models aim to solve problems encountered by classical data analysis in cases where the inputs and outputs of systems and processes are volatile and complex, making measurement difficult.
Fuel Cells for Transportation: Fundamental Principles and Applications is the first comprehensive reference on the application of fuel cells for light- and heavy-duty transportation. Addressing the subject from both a materials and engineering perspective, the book examines integration, modeling, and optimization of fuel cells from fundamentals to the latest advances. Chapters address every aspect of fuel cell systems for transport applications, including performance optimization, stack characterization, low-cost materials and catalysts, design of bipolar plates and flow fields, water and thermal management, durability under automotive driving cycles, cold start, state of the art characterization, optimization of various components, and more. Each chapter reviews the fundamental principles of the topic before going on to examine the latest developments alongside current applications and real-world case studies. This is an essential reference for graduate students and researchers working on fuel cells for transport applications, as well as professional engineers involved in the application of fuel cells and clean energy and working in any sector of the transportation industry.
Real-Time Simulation Technology for Modern Power Electronics provides an invaluable foundation and state-of-the-art review on the most advanced implementations of real-time simulation as it appears poised to revolutionize the modeling of power electronics. The book opens with a discussion of power electronics device physic modeling, component modeling, and power converter modeling before addressing numerical methods to solve converter model, emphasizing speed and accuracy. It discusses both CPU-based and FPGA-based real-time implementations and provides an extensive review of current applications, including hardware-in-the-loop and its case studies in the micro-grid and electric vehicle applications. The book closes with a review of the near and long-term outlooks for the evolving technology. Collectively, the work provides a systematic resource for students, researchers, and engineers in the electrical engineering and other closely related fields.
Moving Particle Semi-implicit Method: Recent Developments and Applications offers detailed step-by-step guidance for advanced numerical models in the MPS method. With a strong focus on overcoming challenges, such as low improving accuracy and numerical stability, the book also examines the applications of MPS, particularly within nuclear engineering. Beginning with an introduction to grid-based and particle-based numerical methods, the book then reviews the original MPS method. Following chapters examine how the original method can be improved, covering topics such as improved discretization models, stabilization methods, multiphase flow and turbulence models, and improving efficiency. Closing chapters analyze applications in nuclear and ocean engineering, as well as considering future developments and implications. This book is an essential read for graduates, researchers and engineers interested in nuclear engineering and computational fluid dynamics.
Rapid Cure Composites: Materials, Processing and Manufacturing presents up-to-date information on the design criteria to formulate matrix systems for rapid curing. Emphasis is placed on the role different materials [resin compound and fiber reinforcement] play in developing fast curing composites, assessment of current and novel manufacturing techniques for adapting fast curing processes, the comparison between conventional curing and rapid curing, and different applications in various industrial sectors [e.g., aerospace, automotive, renewables and marine]. The book will be an essential reference resource for academic and industrial researchers working in the field of composite materials, processing and manufacturing organizations, materials scientists, and more. Polymer composites are widely used in several industries, including aerospace, automobile, spray and coatings, and electronics due to their lightweight and superior mechanical properties. However, one of the dominant hurdles towards their growth in commercial industries is the long curing cycle and slow production.
Visualization, Visual Analytics and Virtual Reality in Medicine: State-of-the-art Techniques and Applications describes important techniques and applications that show an understanding of actual user needs as well as technological possibilities. The book includes user research, for example, task and requirement analysis, visualization design and algorithmic ideas without going into the details of implementation. This reference will be suitable for researchers and students in visualization and visual analytics in medicine and healthcare, medical image analysis scientists and biomedical engineers in general. Visualization and visual analytics have become prevalent in public health and clinical medicine, medical flow visualization, multimodal medical visualization and virtual reality in medical education and rehabilitation. Relevant applications now include digital pathology, virtual anatomy and computer-assisted radiation treatment planning.