Electron Magnetic Resonance: Applications in Physical Sciences and Biology, Volume 50, describes the principles and recent trends in different experimental methods of Electron Magnetic Resonance (EMR) spectroscopy. In addition to principles, experimental methods and applications, each chapter contains a complete list of references that guide the reader to relevant literature. The book is intended for both skilled and novice researchers in academia, professional fields, scientists and students without any geographical limitations. It is useful for both beginners and experts in the field of Electron Spin Resonance who are looking for recent experimental methods of EMR techniques.
Experimental Methods and Instrumentation for Chemical Engineers is a practical guide for research engineers and students, process engineers and, consultants, and others in the chemical engineering field. This unique book thoroughly describes experimental measurements and instrumentation in the contexts of pressure, temperature, fluid metering, chromatography, and more. Chapters on physico-chemical analysis and analysis of solids and powders are included as well. Throughout the book, the author examines all aspects of engineering practice and research. The principles of unit operations, transport phenomena, and plant design form the basis of this discipline. Experimental Methods and Instrumentation for Chemical Engineers integrates these concepts with statistics and uncertainty analysis to define factors that are absolutely necessary to measure and control, how precisely, and how often. Experimental Methods and Instrumentation for Chemical Engineers is divided into several themes, including the measurement of pressure, temperature flow rate, physico-chemical properties, gas and liquid concentrations and solids properties. Throughout the book, the concept of uncertainty is discussed in context, and the last chapter is dedicated to designing and experimental plan. The theory around the measurement principles is illustrated with examples. These examples include notions related to plant design as well as cost and safety.
Absolute Radiometry: Electrically Calibrated Thermal Detectors of Optical Radiation considers the application of absolute radiometry, a technique employed in optical radiation metrology for the absolute measurement of radiant power. This book is composed of eight chapters and begins with the principles of the absolute measurement of radiant power. The subsequent chapters provide the criteria associated with reflectance and transmittance of optical radiation and the parameters used to characterize the performance of radiation detectors. A chapter presents an analysis of the temperature distribution in a detector element. This topic is followed by discussions of the environmental and instrumental corrections in absolute radiometry. The final chapters deal with the alternative optical power scales and direct current substitution methods used in other fields of metrology.
Methods and Phenomena, 4: Their Applications in Science and Technology: Microweighing in Vacuum and Controlled Environments focuses on the principles, methodologies, and approaches involved in micro mass measurements. The selection first elaborates on introduction and microbalance review, beam microbalance design, construction and operation, and sources of error in microweighing in controlled environments. Discussions focus on Brownian motion, Knudsen forces, gravitational forces, microbalance construction and operation, auxiliary equipment for operation of a vacuum microbalance, undesirable disturbances or forces, calibration techniques, and classification of various types of microbalances. The text then takes a look at physical adsorption studies and chemisorption studies with the vacuum microbalance, simultaneous microgravimetric and residual gas analyzer measurements, and simultaneous measurement of mass change and infrared spectra. Topics include chemisorption results obtained on other solids and silver powders, probing the surface phase, quantitative information from adsorption and desorption, measuring techniques, and examples of physisorption measurements and their evaluation. The manuscript examines unusual applications of the vacuum microbalance and high temperature reaction studies, as well as empirical and theoretical rate laws, permeation of water vapor through plastic membranes, and measurement of permittivity and dielectric loss factor. The selection is a valuable source of data for researchers wanting to explore microweighing in vacuum and controlled environments.
The information obtained about a measured object is called ``crude'' measurement information and must be related to the conditions under which the measurement took place. Using ``crude'' measurement information as a starting point, evaluation produces physically correctly interpreted data with their estimated (or corrected) error. Although a number of works deal with the evaluation of measurements, they either appeared a long time ago or serve essentially different aims. This book gives a comprehensive and current overview on the basic principles, aids, devices, and methods in the evaluation of measurements performed in all fields of technology and science in order to gain information about physical or technical objects. It also provides an introduction to the more recent problem areas such as frequency analysis, stochastic measurement information, real time treatment of measurement information, etc.The book will prove useful in solving the problem areas encountered by those involved in measurement technology and measurement evaluation. It will also serve as an introduction to those not possessing any specialized and advanced technical training in the subject matter.
Ion implantation technology has made a major contribution to the dramatic advances in integrated circuit technology since the early 1970's. The ever-present need for accurate models in ion implanted species will become absolutely vital in the future due to shrinking feature sizes. Successful wide application of ion implantation, as well as exploitation of newly identified opportunities, will require the development of comprehensive implant models. The 141 papers (including 24 invited papers) in this volume address the most recent developments in this field. New structures and possible approaches are described. The implications for ion implantation technology as well as additional observations of needs and opportunities are discussed. The volume will be of value to all those who are interested in acquiring a more complete understanding of the current developments in ion implantation processes and comprehensive implant models.
Applications of Piezoelectric Quartz Crystal Microbalances deals with the theory, design, artifacts, and varied applications of the piezoelectric quartz crystal microbalance. Applications of microbalances range from thin film deposition process control to simultaneous measurement of mass and temperature, analytical chemistry, and space system contamination studies. Stress effects in microbalances are also considered. Comprised of 10 chapters, this volume begins with a historical background and overview of applications of piezoelectric quartz crystal microbalances, followed by an analysis of the theory and practice of microbalances. The role of acoustic impedance in a quartz crystal microbalance and design considerations for a microbalance are given emphasis. Subsequent chapters focus on applications of microbalances in thin film deposition process control; simultaneous measurement of mass and temperature; surface science and analytical chemistry; plasma-assisted etching and space system contamination studies; and aerosol mass measurement. This monograph will be of interest to students and practitioners of physics, chemistry, and materials science.
This book covers the basic topics associated with the measurement, analysis and simulation of random environmental processes which are encountered in practice when dealing with the dynamics, fatigue and reliability of structures in real environmental conditions. The treatment is self-contained and the authors have brought together and integrated the most important information relevant to this topic in order that the newcomer can see and study it as a whole. This approach should also be of interest to experienced engineers from fatigue laboratories who want to learn more about the possible methods of simulation, especially for use in real time on electrohydraulic computer-controlled loading machines.Problems of constructing a measuring system are dealt with in the first chapter. Here the authors discuss the choice of measuring conditions and locations, as well as the organization of a chain of devices for measuring and recording random environmental processes. Some experience gained from practical measurements is also presented. The recorded processes are further analysed by various methods. The choice is governed by the aims of the measurements and applications of the results. Chapter 2 is thus devoted to methods of random process evaluations for digital computers, both from the fatigue and dynamic point of view. The most important chapter is Chapter 3 as this presents a review of up-to-date methods of random process simulation with given statistical characteristics. These methods naturally follow those of random process analysis, and their results form initial data for the corresponding simulations algorithms, including occurrences of characteristic parameters of counting methods, reproduction of correlation theory characteristics and of autoregressive models. The simulation of non-stationary processes is treated in depth, taking into account their importance for practical applications and also the lack of information of this subject.The book is intended to help resolve many practical problems concerning the methods and quality of environmental process evaluation and simulation which can arise when up-to-date loading systems with computer control are being used in material, component and structural fatigue and dynamic research.
Fundamental Studies in Engineering 3: Amplitude Distribution Spectrometers reviews amplitude or pulse-height distribution analyzers, both single- and multichannel types, and spectrometers, along with their construction and operation. It discusses the basic parameters of electrical impulses, the general parameters of amplitude distribution spectrometers, the conventional methods of analyzing amplitude distribution by means of single-channel spectrometers, analysis of amplitude spectra using computer methods, and methods and devices for multiparameter amplitude analysis. Comprised of eight chapters, this volume begins with an overview of physical phenomena that can be represented in the form of electrical impulses arising in transducers of physical quantities. It then discusses the use of pulse-height spectrometers to determine the height distributions of electrical impulses, trends in the development of pulse-height spectrometers, conventional pulse-height analysis, and multispectral scaling. The reader is methodically introduced to the analysis of Gaussian distributions, Fourier-transform analysis, and measuring units used in preliminary signal processing. Other chapters focus on spectrogram recording methods, methods of spectrum averaging, computer methods of spectral analysis, and methods of recording multi-parameter spectrograms. The book concludes with a review of the use of pulse-height spectrometers in a wide range of fields such as medicine, biology, astronomy, nuclear research, space research, and physico-chemical research. Users of amplitude spectrometers in various fields of science and technology will find this book extremely useful.
This third updated and enlarged edition includes about 350 new papers added to the previous list of references. The contents have been revised and updated in the areas of:Thermonuclear pumping; Throughput; Transmission probability; Electronic circuit simulation; Sorption on charcoal; Desorption from porous materials; Desorption from stainless steel, A1 alloys (outgassing rates); Ion bombardment (glow discharge) cleaning; Clay - type pumps; Turbomolecular pumps-improvements; Cryosorption; NEG (Nonevaporable getter) linear pumps; Standards for measurement of pumping speed (Recommended practice, test domes); Spinning rotor gauges; Quartz friction gauges; Increase of sensitivity of thermocouple gauges; Lubrication in vacuum; Calibration of diffusion leaks; Improvements in leak detection.Besides its role in educational activities, the book will also serve as a handbook for those working in this field, or in fields connected to Vacuum Technology.Comments from the press on the second edition:"A valuable reference work for undergraduate libraries...well organized and clearly written and strikes an appropriate balance between completeness and attention to fundamentals. The index and references are unusually complete. Recommended." (Choice)"Roth's new book contains a comprehensive collection of information on rarefied-gas flow, physical and chemical phenomena associated with vacuum technology, the production and measurement of high vacuum and sealing and leak-detection techniques. One finds a wealth of equations, numerical examples, tables, graphs and monographs. The book is more a handbook than a source book of latest developments. It is suitable for teaching, but the wealth of organized data should also make the book highly useful to engineers..." (Physics Today)