Skip to main content

Books in Materials science

The Materials Science portfolio includes titles covering core knowledge and new research and applications across the field: nanotechnology and nanomaterials; polymers and plastics; textiles; composites and ceramics; electronic, magnetic, and optical materials; metals and alloys; biomaterials; surface and film science and coating technologies; materials chemistry, and more. In-depth coverage, innovative state-of-the-art approaches, and real-world application examples provide valuable, actionable insights for researchers, students, and the corporate sector. Elsevier's Materials Science portfolio places special attention on areas of current and emerging interest such as additive manufacturing / 3D printing, graphene and 2D materials, smart materials, biomimetics... The content in Elsevier's Materials Science titles program addresses core challenges facing science and society: sustainable energy technologies, the circular economy, health and human welfare.

  • Plant and Algal Hydrogels for Drug Delivery and Regenerative Medicine

    • 1st Edition
    • Tapan Kumar Giri + 1 more
    • English
    Plant and Algal Hydrogels for Drug Delivery and Regenerative Medicine offers a materials-focused and systematic overview of biopolymeric hydrogels utilized for biomedical applications. The book details the synthesis and characterization of plant and algal-based hydrogels, with each chapter addressing a separate polysaccharide hydrogel type. Specific applications in drug delivery and regenerative medicine are also discussed, highlighting the efficacy, biocompatibility, benefits and challenges for each polysaccharide hydrogel subtype. There is increasing demand for biomaterials which reduce/prevent the host response, inflammation and rejection, hence this book provides a timely resource. Biopolymeric hydrogels have skyrocketed because of their necessity in in vivo applications. They create an environment similar to living tissue, which is both biocompatible and biodegradable. Plant and algal polysaccharides in particular are well-equipped with functional groups that are easily modified for beneficial results.
  • Nanosensors for Smart Manufacturing

    • 1st Edition
    • Sabu Thomas + 4 more
    • English
    Nanosensors for Smart Manufacturing provides information on the fundamental design concepts and emerging applications of nanosensors in smart manufacturing processes. In smart production, if the products and machines are integrated, embedded, or equipped with sensors, the system can immediately collect the current operating parameters, predict the product quality, and then feed back the optimal parameters to machines in the production line. In this regard, smart sensors and their wireless networks are important components of smart manufacturing. Nanomaterials-based sensors (nanosensors) offer several advantages over their microscale counterparts, including lower power consumption, fast response time, high sensitivity, lower concentration of analytes, and smaller interaction distance between sensors and products. With the support of artificial intelligence (AI) tools such as fuzzy logic, genetic algorithms, neural networks, and ambient intelligence, sensor systems have become smarter. This is an important reference source for materials scientists and engineers who want to learn more about how nanoscale sensors can enhance smart manufacturing techniques and processes.
  • Explosion, Shock-Wave and High-Strain-Rate Phenomena of Advanced Materials

    • 1st Edition
    • Kazuyuki Hokamoto
    • English
    Materials processing using explosion, shock-wave and high-strain-rate phenomena was developed after WWII, and these explosive forming and welding techniques have since been adopted as an accepted industrial technology. Such extremely high-rate phenomena historically used empirical experiences while the experimental conditions were not well documented due to the difficulties inherent in understanding the real response or behaviour of materials. Based upon the recent development of numerical techniques for analysis and the enriched data available on the behaviour of materials, it is now possible to predict such high-rate phenomena based upon numerical and experimental approaches including optical observation. Explosion, Shock-wave and High-strain-rate Phenomena of Advanced Materials demonstrates the deformation of various materials at high-rate based upon numerical analysis and supported by experimental evidence. The book is recommended for researchers and engineers who would like to learn more about the high-rate effect of materials and those who need to resolve multi-physics problems based on numerical approach. It is also ideal for researchers and engineers interested with explosive and other high-rate processing of materials.
  • Engineered Polymeric Fibrous Materials

    • 1st Edition
    • Masoud Latifi
    • English
    Engineered Polymeric Fibrous Materials explains cutting edge techniques for the engineering of fibrous materials from physical, mechanical, and chemical points of view. Both conventional and nanofibers are described in this uniquely comprehensive book, for a wide range of applications including biomedical, automotive, aerospace, agriculture, energy, and environmental. This book refers to recent advances made in both academia and industry, in topics such as fiber-reinforced composites, fibrous thermal insulators, drug delivery and tissue engineering, and smart textiles and energy, and explains how fibrous structures are engineered to offer new solutions to important problems. The first two chapters provide basic introductory information to allow a wider range of readers to engage with the book.
  • Magnetic Skyrmions and Their Applications

    • 1st Edition
    • Giovanni Finocchio + 1 more
    • English
    Magnetic skyrmions are particle-like objects described by localized solutions of non-linear partial differential equations. Up until a few decades ago, it was believed that magnetic skyrmions only existed in condensed matter as short-term excitations that would quickly collapse into linear singularities. The contrary was proven theoretically in 1989 and evidentially in 2009. It is now known that skyrmions can exist as long-living metastable configurations in low-symmetry condensed matter systems with broken mirror symmetry, increasing the potential applications possible. Magnetic Skyrmions and their Applications delves into the fundamental principles and most recent research and developments surrounding these unique magnetic particles. Despite achievements in the synthesis of systems stabilizing chiral magnetic skyrmions and the variety of experimental investigations and numerical calculations, there have not been many summaries of the fundamental physical principles governing magnetic skyrmions or integrating those concepts with methods of detection, characterization and potential applications. Magnetic Skyrmions and their Applications delivers a coherent, state-of-the-art discussion on the current knowledge and potential applications of magnetic skyrmions in magnetic materials and device applications. First the book reviews key concepts such as topology, magnetism and materials for magnetic skyrmions. Then, charactization methods, physical mechanisms, and emerging applications are discussed.
  • Thermoelectricity and Advanced Thermoelectric Materials

    • 1st Edition
    • Ranjan Kumar + 1 more
    • English
    Thermoelectricity and Advanced Thermoelectric Materials reviews emerging thermoelectric materials, including skutterudites, clathrates, and half-Heusler alloys. In addition, the book discusses a number of oxides and silicides that have promising thermoelectric properties. Because 2D materials with high figures of merit have emerged as promising candidates for thermoelectric applications, this book presents an updated introduction to the field of thermoelectric materials, including recent advances in materials synthesis, device modeling, and design. Finally, the book addresses the theoretical difficulties and methodologies of computing the thermoelectric properties of materials that can be used to understand and predict highly efficient thermoelectric materials. This book is a key reference for materials scientists, physicists, and engineers in energy.
  • Bionanocomposites in Tissue Engineering and Regenerative Medicine

    • 1st Edition
    • Shakeel Ahmed + 1 more
    • English
    Bionanocomposites in Tissue Engineering and Regenerative Medicine explores novel uses of these in tissue engineering and regenerative medicine. This book offers an interdisplinary approach, combining chemical, biomedical engineering, materials science and pharmacological aspects of the characterization, synthesis and application of bionanocomposites. Chapters cover a broad selection of bionanocomposites including chitosan, alginate and more, which are utilized in tissue engineering, wound healing, bone repair, drug formulation, cancer therapy, drug delivery, cartilage regeneration and dental implants. Additional sections of Bionanocomposites in Tissue Engineering and Regenerative Medicine discuss, in detail, the safety aspects and circular economy of bionanocomposites – offering an insight into the commercial and industrial aspects of these important materials. Bionanocomposites in Tissue Engineering and Regenerative Medicine will prove a highly useful text for for those in the fields of biomedical engineering, chemistry, pharmaceutics and materials science, both in academia and industrial R&D groups.
  • Polysaccharide-Based Nanocomposites for Gene Delivery and Tissue Engineering

    • 1st Edition
    • Showkat Ahmad Bhawani + 2 more
    • English
    Polysaccharide-Based Nanocomposites for Gene Delivery and Tissue Engineering presents quantitative background on new polysaccharide nanocomposites in a clear and logical way, highlighting the most exciting applications in gene delivery and tissue engineering and their progress. The book focuses on the different types of polysaccharide nanocomposites for gene delivery and tissue engineering and covers polysaccharide hydrogels for tissue engineering and polysaccharide magnetic nanocomposites for gene delivery. Chapters cover various nanocomposites presented in twenty-one separate chapters. This book will be of great interest to all those researching the development and applications of polysaccharide-based nanocomposites for modeling. As polysaccharide-based nanocomposites promise cutting-edge applications in gene delivery and tissue engineering, with their development at the forefront of modern medicine, this book is a welcome title on this exciting science.
  • Polymer-Based Advanced Functional Composites for Optoelectronic and Energy Applications

    • 1st Edition
    • Nithin Kundachira Subramani + 2 more
    • English
    Polymer-Based Advanced Functional Composites for Optoelectronic and Energy Applications explains how polymer-based smart composites and nanocomposites can be prepared and utilized for novel optical, sensor and energy-related applications. The book begins with an introductory section on the fundamentals of smart polymer composites, including structure-property relationships and conjugated polymers. Other sections examine optical applications, including the use of polymer-based smart composites for luminescent solar concentrators, electro-chromic applications, light conversion applications, ultraviolet shielding applications, LED encapsulation applications, sensor applications, including gas-sensing, strain sensing, robotics and tactile sensors, with final sections covering energy-related applications, including energy harvesting, conversion, storage, vibrational energy harvesting, and more. This is an essential guide for researchers, scientists and advanced students in smart polymers and materials, polymer science, composites, nanocomposites, electronics and materials science. It is also a valuable book for scientists, R&D professionals and engineers working with products that could utilize smart polymer composites.
  • Introduction to Fracture Mechanics

    • 1st Edition
    • Robert O. Ritchie + 1 more
    • English
    Introduction to Fracture Mechanics presents an introduction to the origins, formulation and application of fracture mechanics for the design, safe operation and life prediction in structural materials and components. The book introduces and informs the reader on how fracture mechanics works and how it is so different from other forms of analysis that are used to characterize mechanical properties. Chapters cover foundational topics and the use of linear-elastic fracture mechanics, involving both K-based characterizing parameter and G-based energy approaches, and how to characterize the fracture toughness of materials under plane-strain and non plane-strain conditions using the notion of crack-resistance or R-curves. Other sections cover far more complex nonlinear-elastic fracture mechanics based on the use of the J-integral and the crack-tip opening displacement. These topics largely involve continuum mechanics descriptions of crack initiation, slow crack growth, eventual instability by overload fracture, and subcritical cracking.