Surface Modification and Coating of Fibers, Polymers, and Composites: Techniques, Properties, and Applications outlines techniques, concepts, characterization, and applications of surface modification for fibers, polymers, and coated fiber-reinforced composites allowing for precision engineering of the mechanical and thermal properties, electrical conductivity, and chemical resistance of these materials. A broad range of fiber types are covered and the book highlights how surface modification enhances the durability and sustainability of them.The book starts with chapters that discuss surface modification techniques for a range of different fibers and composites, including animal-based, mineral, leaf-based, root-based, and more. The next section of the book covers surface coating techniques as well as morphology, characterization, and computational modeling of surface-coated materials, and the book concludes with a section that outlines the properties and applications of coated fiber composites.
Machine Learning for Powder-based Metal Additive Manufacturing outlines machine learning (ML) methods for additive manufacturing (AM) of metals that will improve product quality, optimize manufacturing processes, and reduce costs. The book combines ML and AM methods to develop intelligent models that train AM techniques in pre-processing, process optimization, and post-processing for optimized microstructure, tensile and fatigue properties, and biocompatibility for various applications. The book covers ML for design in AM, ML for materials development and intelligent monitoring in metal AM, both geometrical deviation and physics informed machine learning modeling, as well as data-driven cost estimation by ML.In addition, optimization for slicing and orientation, ML to create models of materials for AM processes, ML prediction for better mechanical and microstructure prediction, and feature extraction by sensing data are all covered, and each chapter includes a case study.
Machining Principles for Shape Generation of Metals explains the basics of machining techniques and metal cutting, as well as the Laplace transform and how it can be applied to understand complex machining processes. The book provides an overview of all machining processes from a geometric perspective, with an emphasis on producing superior parts. Mechanics, vibration control, processing mechanics, thermal deformation, and numerical control principles for metal cutting are each reviewed, with details on the principle of cutting away, forced and self-excited vibration, and the physical properties of workpiece and tool materials. Common questions and answers are provided throughout the book to reinforce learning of key concepts.
High-Entropy Alloys: Design, Manufacturing, and Emerging Applications presents cutting-edge advances in the field of these materials, covering their mechanics, methods of manufacturing, and applications, all while emphasizing the link between their structure/microstructure and functional properties.The book starts with a section on the fundamentals of high-entropy alloys (HEAs), with chapters discussing their thermodynamics, subgroups (transition metal; refractory; ceramics; metallic glasses and more), physical metallurgy, and microstructural characterization. The next section features chapters which look at manufacturing processes of HEAs, such as liquid metallurgy synthesis, in-situ synthesis, additive manufacturing, machine learning, friction stir welding, and fabrication of coatings for HEAs. The final section of the book covers applications of these materials, including their use as irradiation-resistant structural materials, catalyst materials, electrode materials, HEAs for solid hydrogen storage, and more. The book is a key resource for academic researchers, grad students, and industry professionals working with HEAs across a range of disciplines and applications including aerospace, functional materials, catalyst materials, gas storage, sensing, super-conducting materials, biomedical, civil engineering, energy storage, and energy materials.
Fundamentals of Machine Component Design bridges theory and practice to provide readers with a thorough understanding of best practices for machine component design and application. Load and stress analysis, fatigue, fracture, and other mechanical behaviors that can result in the failure of a machine component are discussed in the early chapters before the book moves on to cover different connections (welded and bolted) prevalent in machine components, and then individual components such as gears, shafts, bearings, springs, pressure vessels, brakes, clutches, keys and couplings, and more. The book ends with chapters outlining different design methods as well as design problems for readers to practice with. Solutions are also provided.
Stress, Strain, and Structural Dynamics: An Interactive Handbook of Formulas, Solutions, and MATLAB Toolboxes, Second Edition is the definitive reference to statics and dynamics of solids and structures, including mechanics of materials, structural mechanics, elasticity, rigid-body dynamics, vibrations, structural dynamics, and structural controls. The book integrates the development of fundamental theories, formulas, and mathematical models with user-friendly interactive computer programs that are written in MATLAB. This unique merger of technical reference and interactive computing provides instant solutions to a variety of engineering problems, and in-depth exploration of the physics of deformation, stress and motion by analysis, simulation, graphics, and animation.
Dynamics of Materials: Experiments, Models and Applications addresses the basic laws of high velocity flow/deformation and dynamic failure of materials under dynamic loading. The book comprehensively covers different perspectives on volumetric law, including its macro-thermodynamic basis, solid physics basis, related dynamic experimental study, distortional law, including the rate-dependent macro-distortional law reflecting strain-rate effect, its micro-mechanism based on dislocation dynamics, and dynamic experimental research based on the stress wave theory. The final section covers dynamic failure in relation to dynamic damage evolution, including the unloading failure of a crack-free body, dynamics of cracks under high strain-rate, and more.
Functional Nanostructured Interfaces for Environmental and Biomedical Applications provides an overview on the characteristics of nanostructured interfaces and their processing technologies for a wide range of applications in the sensing, photocatalytic and bioengineering areas. The book focuses on the fundamentals of multifunctional nanostructured interfaces and their associated technologies, including versatile technologies, such as colloidal lithography, scanning probe techniques and laser nanostructuring, which can be used to obtain multifunctional 2D and 3D nanotextured interfaces. The book provides multidisciplinary chapters, summarizes the current status of the field, and covers important scientific and technological developments made over past decades. As such, it is an invaluable reference to those working in the design of novel nanostructured materials.
Novel Nanomaterials for Biomedical, Environmental, and Energy Applications is a comprehensive study on the cutting-edge progress in the synthesis and characterization of novel nanomaterials and their subsequent advances and uses in biomedical, environmental and energy applications. Covering novel concepts and key points of interest, this book explores the frontier applications of nanomaterials. Chapters discuss the overall progress of novel nanomaterial applications in the biomedical, environmental and energy fields, introduce the synthesis, characterization, properties and applications of novel nanomaterials, discuss biomedical applications, and cover the electrocatalytical and photothermal effects of novel nanomaterials for efficient energy applications. The book will be invaluable to academic researchers and biomedical clinicians working with nanomaterials.
Nanomaterials for the Removal of Pollutants and Resource Reutilization presents the fundamental principles necessary for the application of nanomaterials in environmental pollution control and resource reutilization, also describing specific novel applications of environmentally functional nanomaterials. In addition to outlining the applications of nanomaterials for pollution control, the book highlights problems and offers solutions. This comprehensive resource will inspire the next generation of nanomaterial designers, providing a state-of-the-art review and exploration of emerging developments.