Piston Engine-Based Power Plants presents Breeze's most up-to-date discussion and clear and concise analysis of this resource, aimed at those working and researching in the area. Various engine types including Diesel and Stirling are discussed, with consideration of economic factors and important planning considerations, such as the size and speed of the plant. Breeze also evaluates the emissions which piston engines can create and considers ways of planning for and controlling those.
Combustion of Pulverised Coal in a Mixture of Oxygen and Recycled Flue Gas focuses on a niche technology, combustion of coal in an oxygen rich environment, which is one approach to obtaining ‘clean coal,’ by making it easier to capture carbon that is released in the combustion process. Toporov’s book breaks ground on covering the key fundamentals of oxycoal technologies, which have not yet been covered in this depth. Combustion of Pulverised Coal in a Mixture of Oxygen and Recycled Flue Gas summarizes the main results from a pioneering work on experimental and numerical investigations of oxyfuel technologies. It provides the theoretical background of the process, the problems to be faced, and the technical solutions that were achieved during these investigations.
Combustion Ash and Residue Management assists owners and operators of Coal-fired and Resource Recovery Power Plants. By applying the principles and reviewing the case studies examples described within this book, accidents and upsets can be avoided and regulatory permitting can be achieved – reducing costs. This unique book is an essential reference for anybody responsible for disposal or utilization of combustion residues. It reflects over 30 years of engineering practice, applying the principles of concrete chemistry and civil engineering/soil mechanics as confirmed by field data. Dr. Richard Goodwin assesses the composition and environmental impact of combustion residues, and provides not only best practices for safe disposal, but also a blueprint for effective reuse, including applications like structural fill, grout, and capping material. Case studies and cost information for ash disposal options are included, in addition to the lessons learned by high-profile failures, such as the TVA Kingston fossil plant coal fly ash slurry spill in 2008. It also applies engineering principles to discuss how to avoid future upsets, including better operator training and monitoring methods.
Design, construct and utilize fuel systems using this comprehensive reference work. Combustion Engineering Issues for Solid Fuel Systems combines modeling, policy/regulation and fuel properties with cutting edge breakthroughs in solid fuel combustion for electricity generation and industrial applications. This book moves beyond theory to provide readers with real-life experiences and tips for addressing the various technical, operational and regulatory issues that are associated with the use of fuels. With the latest information on CFD modeling and emission control technologies, Combustion Engineering Issues for Solid Fuel Systems is the book practicing engineers as well as managers and policy makers have been waiting for.
This major reference book offers the professional engineer - and technician - a wealth of useful guidance on nearly every aspect of gas turbine design, installation, operation, maintenance and repair. The author is a noted industry expert, with experience in both civilian and military gas turbines, including close work as a technical consultant for GE and Rolls Royce.
Over the past decade, the prospect of climate change resulting from anthropogenic CO2 has become a matter of growing public concern. Not only is the reduction of CO2 emissions extremely important, but keeping the cost at a manageable level is a prime priority for companies and the public, alike.The CO2 capture project (CCP) came together with a common goal in mind: find a technological process to capture CO2 emissions that is relatively low-cost and able be to be expanded to industrial applications. The Carbon Dioxide Capture and Storage Project outlines the research and findings of all the participating companies and associations involved in the CCP. The final results of thousands of hours of research are outlined in the book, showing a successful achievement of the CCP’s goals for lower cost CO2 capture technology and furthering the safe, reliable option of geological storage. The Carbon Dioxide Capture and Storage Project is a valuable reference for any scientists, industrialists, government agencies, and companies interested in a safer, more cost-efficient response to the CO2 crisis.
As electricity generators and process industries are increasingly seeking less expensive fuels for the generation of electricity and process heat, there is an ever-increasing industry-led emphasise on exploring the possibility of utilising opportunity fuels. Fuels of Opportunity: Characteristics and Uses In Combustion Systems considers a diverse range of opportunity fuels and their application by addressing the following fundamental issues: What are the specific fuel properties of these opportunity fuels? What are the combustion/conversion characteristics of these fuels fired alone or in combination with conventional fossil fuels? How are they best applied in energy settings? What are the technical and environmental consequences of their use? In considering these fuels the book presents detailed updated information on fuel characterization approaches and fuel utilization technologies.
Fundamentals and Technology of Combustion contains brief descriptions of combustion fundamental processes, followed by an extensive survey of the combustion research technology. It also includes mathematical combustion modeling of the processes covering mainly premixed and diffusion flames, where many chemical and physical processes compete in complex ways, for both laminar and turbulent flows. The combustion chemistry models that validate experimental data for different fuels are sufficiently accurate to allow confident predictions of the flame characteristics. This illustrates a unique bridge between combustion fundamentals and combustion technology, which provides a valuable technical reference for many engineers and scientists. Moreover, the book gives the reader sufficient background of basic engineering sciences such as chemistry, thermodynamics, heat transfer and fluid mechanics. The combustion research and mathematical models fit between small-scale laboratory burner flames, and large-scale industrial boilers, furnaces and combustion chambers. The materials have been collected from previous relevant research and some selected papers of the authors and co-workers, which have been presented mainly in different refereed journals, international conferences and symposia, thus providing a comprehensive collection. Furthermore, the book includes some of the many recent general correlations for the characteristics of laminar, turbulent, premixed and diffusion flames in an easily usable form. The authors believe that further progress in optimizing combustion performance and reducing polluting emissions can only be treated through understanding of combustion chemistry.
Over the past decade the topic of emissions reduction and control has remained an important area of research due to the enforcement of various Government policies in an attempt to minimize the impact on the environment. One area in which a great deal of research has been conducted to address this policy is NOx/SOx suppression. However, despite the progress that has been made over this time period, further research into the most effective method of reducingNOx/SOx emissions is still urgently required. In developed countries, a more stringent requirement in the level of emissions (such as is NOx/SOx component of less than 10ppm) will be enforced in the near future. Developing countries will also need a new technology that is effective and that is suited to each countries needs. Additional research and development efforts are thus necessary to meet such requirements. This compendium contains a collection of key papers themed around NOx/SOx emissions from combustion of hydrocarbon resources and the attempts to secure an efficient and effective method for reducing these emissions. These key papers are taken from the journals Fuel, Fuel Processing Technology and Progress in Energy and Combustion Science.