Skip to main content

Books in Computer science

The Computing collection presents a range of foundational and applied content across computer and data science, including fields such as Artificial Intelligence; Computational Modelling; Computer Networks, Computer Organization & Architecture, Computer Vision & Pattern Recognition, Data Management; Embedded Systems & Computer Engineering; HCI/User Interface Design; Information Security; Machine Learning; Network Security; Software Engineering.

  • Deep Learning Assessment of Neurological Imaging

    • 1st Edition
    • Tripti Goel + 3 more
    • English
    Deep Learning Assessment of Neurological Imaging provides an introduction to deep learning structures and pre-processing methods for detecting MRI anomalies. It also provides a comprehensive account of deep learning research on MRI images for Alzheimer's disease, Parkinson's disease, and schizophrenia, and a discussion on current research issues and future objectives. The book is a valuable resource to guide new entrants in the field to make a meaningful impact in their development efforts. The book concludes with a brief overview of the problems discussed and potential future advancements in the field.
  • Digital Supply Chain Transformation

    Implementing Technology, Analytics, and Data-Driven Solutions
    • 1st Edition
    • Vinaytosh Mishra
    • English
    Digital Supply Chain Transformation: Implementing Technology, Analytics, and Data-Driven Solutions delves into the intricate world of supply chain management, emphasizing the role of digital transformation in modern supply chains. Through a blend of theoretical learning and practical applications, readers will gain a deep understanding of foundational supply chain principles while exploring emerging trends and technologies reshaping the industry. Topics such as system dynamics modelling, machine learning, artificial intelligence, and end-to-end visibility are explored in-depth, equipping readers with the tools and knowledge needed to excel in the rapidly evolving landscape of supply chain management. Readers will learn how comprehend core principles and elements of supply chain management and its pivotal role in businesses and industries, recognize the significance of digital transformation in supply chains, understand the tools, technologies, and strategies essential for a successful transformation, evaluate the importance of end-to-end supply chain visibility, employ methods and technologies to enhance this visibility in practical scenarios, and apply system dynamics modeling techniques to address complex supply chain problems to optimize supply chain processes, and much more.
  • Digital Twins

    Core Principles and AI Integration
    • 1st Edition
    • Bedir Tekinerdogan + 1 more
    • English
    Digital Twins: Core Principles, System Engineering, and AI Integration provides a comprehensive overview of digital twin technology, a cutting-edge innovation that bridges the physical and digital worlds. The book addresses common challenges such as data integration, security, scalability, and the alignment of digital twin models with actual physical processes. After presenting core concepts of digital twins for software engineering, the book discusses integration with advanced digital solutions such as AI, IoT, Cloud computing, Big Data Analytics, and Extended Reality (XR). Next, the authors provide readers with a thorough presentation of digital twins' applications in a variety of settings and industry/research topics.Finally, the book concludes with a discussion of challenges and solutions, along with future trends in digital twins research and development. As digital twin technology evolves, its integration with various advanced digital solutions is becoming essential for achieving real-time insights and autonomous decision-making. Challenges include understanding the interoperability of these technologies, managing data complexity, ensuring security, and optimizing for low-latency environments.
  • Federated Learning

    Foundations and Applications
    • 1st Edition
    • Rajkumar Buyya + 2 more
    • English
    Federated Learning: Foundations and Applications provides a comprehensive guide to the foundations, architectures, systems, security, privacy, and applications of federated learning. Sections cover fundamental concepts, including machine learning, deep learning, centralized learning, and distributed learning processes. The book then progresses to coverage of the architectures, algorithms, and system models of Federated Learning, as well as security, privacy, and energy-efficiency techniques. Finally, the book presents various applications of Federated Learning through real-world case studies, illustrating both centralized and decentralized Federated Learning.Federated Learning has become an increasingly important machine learning technique because it introduces local data analysis within clients and requires exchange of only model parameters between clients and servers, hence the addition of this new release is ideal for those interested in the topics presented.
  • Intelligent Cyber-Physical Systems for Sustainable Healthcare

    • 1st Edition
    • Vandana Bajaj + 5 more
    • English
    Intelligent Cyber-Physical Systems for Sustainable Healthcare addresses the integration of emerging technologies like Virtual Reality, Smart Robotics, and Human-Computer Interaction, which are crucial for maximizing digital health's potential. The book includes case studies that highlight challenges faced by medical practitioners and industry professionals, providing valuable insights for designing sustainable iCPS solutions. Aimed at biomedical engineers, researchers, and industry professionals, it offers guidance for developing practical applications in sustainable healthcare. Additionally, shared, cross-disciplinary experiences assist engineers with less clinical expertise in enhancing healthcare applications in the intelligent digital health sector. Overall, case studies illustrate past challenges in the healthcare industry and present effective solutions to overcome them, making the book a comprehensive resource for advancing sustainable healthcare practices.
  • Data Science and Interactive Visualization Tools for the Analysis of Qualitative Evidence

    • 1st Edition
    • Manuel González Canché
    • English
    Data Science and Interactive Visualization Tools for the Analysis of Qualitative Evidence empowers qualitative and mixed methods researchers in the data science movement by offering no-code, cost-free software access so that they can apply cutting-edge and innovative methods to synthetize qualitative data. The book builds on the idea that qualitative and mixed methods researchers should not have to learn to code to benefit from rigorous open-source, cost-free software that uses artificial intelligence, machine learning, and data visualization tools—just as people do not need to know C++ or TypeScript to benefit from Microsoft Word. The real barrier is the hundreds of R code lines required to apply these concepts to their databases. By removing the coding proficiency hurdle, this book will empower their research endeavors and help them become active members of and contributors to the applied data science community. The book offers a comprehensive explanation of data science and machine learning methodologies, along with access to software application tools to implement these techniques without any coding proficiency. The book addresses the need for innovative tools that enable researchers to tap into the insights that come out of cutting-edge data science tools with absolutely no computer language literacy requirements.
  • Federated Learning for the Metaverse

    Applications in Virtual Environments
    • 1st Edition
    • Noor Zaman Jhanjhi + 3 more
    • English
    Federated Learning for the Metaverse: Applications in Virtual Environments provides readers with insights into how federated learning, a decentralized machine learning paradigm, can be strategically applied to address critical aspects of the metaverse. The book covers a wide range of topics, including privacy-preserving personalization, security, collaboration, adaptive learning environments, real-time communication, decentralized governance, language understanding, immersive learning experiences, avatar customization, and dynamic scene rendering.
  • Metaverse and AI in Healthcare

    A Federated Learning Approach
    • 1st Edition
    • Jyotir Moy Chatterjee + 1 more
    • English
    Metaverse and AI in Healthcare: A Federated Learning Approach addresses the transformative integration of artificial intelligence and metaverse technologies in healthcare. It fills a critical gap by exploring how federated learning enables secure, decentralized data sharing and personalized medicine in virtual health platforms, meeting urgent demands for privacy, interoperability, and innovation. The book is structured into four parts covering foundational AI and federated learning concepts, augmented reality and metaverse applications, legal and cybersecurity challenges, and emerging strategic trends. Contributors from academia and industry present chapters on predictive modeling, cybersecurity frameworks, AR fitness, legal perspectives, and AI-driven medical tourism, supported by case studies and technical explanations. This reference equips graduate students, researchers, and professionals in academia and industry who specialize in computer science, federated learning, biomedical engineering, and digital healthcare with practical knowledge and forward-looking analysis. It empowers readers to navigate evolving digital health ecosystems, addressing data privacy, customized care, and global access challenges through federated learning and metaverse solutions.
  • Essential Kubeflow

    Engineering ML Workflows on Kubernetes
    • 1st Edition
    • Prashanth Josyula + 2 more
    • English
    Essential Kubeflow: Engineering ML Workflows on Kubernetes provides the tools needed to transform ML workflows from experimental notebooks to production-ready platforms. Through hands-on examples and production-tested patterns, readers will master essential skills for building enterprise-grade Machine Learning platforms, including architecting production systems on Kubernetes, designing end-to-end ML pipelines, implementing robust model serving, efficiently scaling workloads, managing multi-user environments, deploying automated MLOps workflows, and integrating with existing ML tools. Whether you're a Machine Learning engineer looking to operationalize models, a platform engineer diving into ML infrastructure, or a technical leader architecting ML systems, this book provides solutions for real-world challenges.With this comprehensive guide to Kubeflow, a widely adopted open source MLOps platforms for automating ML workloads, readers will have the expertise to build and maintain scalable ML platforms that can handle the demands of modern enterprise AI initiatives.
  • Deep Learning Applications in Neuroinformatics

    Advances, Methods, and Perspectives
    • 1st Edition
    • Karthik Ramamurthy
    • English
    Deep Learning Applications in Neuroinformatics: Advances, Methods, and Perspectives explores how deep learning revolutionizes neuroinformatics, covering the latest methods and applications of deep learning in analyzing neuroimaging data from EEG, MRI, PET, and more. The book addresses critical neurological disorders like Alzheimer’s disease, Mild Cognitive Impairment, Stroke, and Autism Spectrum Disorder, bridging the gap between neuroscience and artificial intelligence. It is an ideal resource for researchers, practitioners, and students with insights from leading experts.