Skip to main content

Books in Computer science

The Computing collection presents a range of foundational and applied content across computer and data science, including fields such as Artificial Intelligence; Computational Modelling; Computer Networks, Computer Organization & Architecture, Computer Vision & Pattern Recognition, Data Management; Embedded Systems & Computer Engineering; HCI/User Interface Design; Information Security; Machine Learning; Network Security; Software Engineering.

  • GeoAI for Earth Observation Imagery

    Fundamentals and Practical Applications
    • 1st Edition
    • Dalton Lunga + 1 more
    • English
    GeoAI for Earth Observation Imagery: Fundamentals and Practical Applications comprehensively covers methodologies of AI and Machine Learning applications of image processing for Earth Observation (EO) Imagery. As traditional image processing methods face challenges with handling vast volumes of EO imagery, leading to efficiencies and limitations when extracting meaningful insights, AI-driven approaches can enhance the efficiency, accuracy, and scalability of image processing. Chapters cover essential methodologies including atmospheric compensation, image enhancement techniques like deblurring and superresolution, and advanced analysis methods such as semantic segmentation and object detection.Cutting-ed... approaches to computing, automating, and optimizing image processing tasks are also covered. Additionally, emerging trends in GeoAi and their implication on future research are reviewed. The book serves as an essential guide for navigating the complexities of spatial data and equips readers with knowledge to enhance their analytical capabilities.
  • Deep Learning in Bioinformatics

    Techniques and Applications in Practice
    • 2nd Edition
    • Habib Izadkhah
    • English
    Deep Learning in Bioinformatics: Techniques and Applications in Practice, Second Edition explores how deep learning can be utilized for addressing important problems in bioinformatics, including drug discovery, de novo molecular design, sequence analysis, protein structure prediction, gene expression regulation, protein classification, biomedical image processing and diagnosis, biomolecule interaction prediction, and in systems biology. The book also presents theoretical and practical successes of deep learning in bioinformatics, pointing out problems and suggesting future research directions. This updated edition includes several new chapters, applications, and examples for new Deep Learning advances and techniques.Dr. Izadkhah provides valuable insights and will help researchers use deep learning techniques in their biological and bioinformatics studies.
  • Digital Transformation and Equitable Global Health

    A Future-Ready Perspective
    • 1st Edition
    • Arletty Pinel + 2 more
    • English
    Digital Transformation and Equitable Global Health: A Future-Ready Perspective presents a collective body of knowledge and global experiences that demonstrate current status and future trends in the use of exponential technologies and their potential for poverty reduction, improving health outcomes, strengthening health systems, and transforming traditional development aid structures. The book uses a translational innovation perspective to guide the reader—regardless of their area of expertise—on the rationale behind the co-creation of human-centered, affordable, and sustainable digital solutions.It addresses the interest of professionals from multiple areas (e.g., technology, health, social development, global financing), and it is a valuable resource for professionals, social scientists, practitioners, researchers, instructors, and undergraduate and graduate students interested in understanding the challenges and complexities of global public health and the applied uses of health technologies for equitable access to primary health care and universal health coverage.
  • Up and Running with AutoCAD 2027

    2D and 3D Drawing, Design and Modeling
    • 1st Edition
    • Robert C. Kaebisch
    • English
    Up and Running with AutoCAD® 2027: 2D and 3D Drawing, Design and Modeling presents a combination of step-by-step instructions, examples, and insightful explanations. The book emphasizes core concepts and practical application of AutoCAD in engineering, architecture, and design. Equally useful in instructor-led classroom training, self-study, or as a professional reference, the book is written by a long-time AutoCAD professor and instructor with the user in mind. To improve student learning, the early chapters have been revised and expanded with additional assignments, more explicit step-by-step guidance for the earliest assignments, improved readability, and a new concise drafting fundamentals reference section focusing on orthographic projection, basic standards, and naming conventions.
  • Integrated Photonics for Sensing Applications

    • 1st Edition
    • Anu Agarwal + 2 more
    • English
    This book introduces sensors as an important application area for integrated photonics. It provides a brief historical perspective and highlights key free-space spectroscopic sensing techniques such as FTIR, Raman, SPR, and reflectometry, and it thoroughly explores the advantages of photonic integrated circuit (PIC) sensor systems, which have the potential for low SWAP-C and high performance. The topics covered include sensor system components such as waveguides (for optical wavelengths less than and greater than 1550 nm), ring resonators and toroids, photonic crystals, MZ interferometers, light input and output, light sources (wavelengths less than and greater than 1550 nm), and spectrometers and detectors. The book considers integrated systems that employ biofunctionalization... for applications in chem–bio sensing, and it also addresses sensor manufacturing at scale, including materials, PDK development, and sensor packaging.
  • Federated Learning

    Foundations and Applications
    • 1st Edition
    • Rajkumar Buyya + 2 more
    • English
    Federated Learning: Foundations and Applications provides a comprehensive guide to the foundations, architectures, systems, security, privacy, and applications of federated learning. Sections cover fundamental concepts, including machine learning, deep learning, centralized learning, and distributed learning processes. The book then progresses to coverage of the architectures, algorithms, and system models of Federated Learning, as well as security, privacy, and energy-efficiency techniques. Finally, the book presents various applications of Federated Learning through real-world case studies, illustrating both centralized and decentralized Federated Learning.Federated Learning has become an increasingly important machine learning technique because it introduces local data analysis within clients and requires exchange of only model parameters between clients and servers, hence the addition of this new release is ideal for those interested in the topics presented.
  • Intelligent Cyber-Physical Systems for Sustainable Healthcare

    • 1st Edition
    • Vandana Bajaj + 5 more
    • English
    Intelligent Cyber-Physical Systems for Sustainable Healthcare addresses the integration of emerging technologies like Virtual Reality, Smart Robotics, and Human-Computer Interaction, which are crucial for maximizing digital health's potential. The book includes case studies that highlight challenges faced by medical practitioners and industry professionals, providing valuable insights for designing sustainable iCPS solutions. Aimed at biomedical engineers, researchers, and industry professionals, it offers guidance for developing practical applications in sustainable healthcare. Additionally, shared, cross-disciplinary experiences assist engineers with less clinical expertise in enhancing healthcare applications in the intelligent digital health sector. Overall, case studies illustrate past challenges in the healthcare industry and present effective solutions to overcome them, making the book a comprehensive resource for advancing sustainable healthcare practices.
  • Artificial Intelligence Applications in Emerging Healthcare Technologies

    • 1st Edition
    • Miguel Antonio Wister Ovando + 2 more
    • English
    Artificial Intelligence Applications in Emerging Healthcare Technologies presents the latest advances and state-of-the-art methods and applications of computer science and emerging AI technologies in health and medicine. The book explores the impact of artificial intelligence (AI) in healthcare for medical decision-making and data analysis, tackling topics such as cloud computing, cybersecurity, the internet of things, natural language processing, virtual health, data science applied to healthcare, personalized medicine, imaging, diagnosis, drug discovery, and diseases, among others.Chapters present adaptations or improvements on previous models and algorithms to process data from different sources. Other chapters investigate new formulations for the optimization of known procedures and algorithms. Finally, all chapters use experimental methods to study problems of interest in healthcare. This is a great resource for researchers and students who want to learn how machine learning algorithms and other data science techniques have been implemented to solve healthcare-related problems.
  • Advances in Multimodal Large Language Models for Healthcare

    Methods and Applications
    • 1st Edition
    • Hari Mohan Pandey + 4 more
    • English
    Advances in Multimodal Large Language Models for Healthcare: Methods and Applications provides valuable insights on Large Language Models in healthcare applications for researchers, academics, and practitioners. The book explains key concepts, including artificial intelligence, machine learning, deep learning, and the evolution of neural networks and transformer models. It then covers generative AI and LLMs for a wide spectrum of healthcare applications, including mental health, clinical decision support, interactive system design, and sensitive analysis. Readers will find this to be a valuable deep dive into the emergent intersection of LLMs and health care, with guidance into applications, technical and programming methods, and more.Although LLMs have shown some promising results in the healthcare sector, numerous challenges need to be addressed before they can be used in patient care. The two key issues with the adoption of LLMs regarding healthcare settings are reliability, transparency, interpretation of results and bias (data and algorithm) management. Unless properly and adequately validated, there may be incorrect medical information provided by the LLM-based systems, which can lead to misdiagnosis or hazardous treatment errors. At this point, LLMs have not only been used for decision making or documentation, they have also proven to be useful in patient engagement through QA systems, medical chatbots, and virtual healthcare.
  • Deep Learning Assessment of Neurological Imaging

    • 1st Edition
    • Tripti Goel + 3 more
    • English
    Deep Learning Assessment of Neurological Imaging provides an introduction to deep learning structures and pre-processing methods for detecting MRI anomalies. It also provides a comprehensive account of deep learning research on MRI images for Alzheimer's disease, Parkinson's disease, and schizophrenia, and a discussion on current research issues and future objectives. The book is a valuable resource to guide new entrants in the field to make a meaningful impact in their development efforts. The book concludes with a brief overview of the problems discussed and potential future advancements in the field.