Skip to main content

Books in Computer science

The Computing collection presents a range of foundational and applied content across computer and data science, including fields such as Artificial Intelligence; Computational Modelling; Computer Networks, Computer Organization & Architecture, Computer Vision & Pattern Recognition, Data Management; Embedded Systems & Computer Engineering; HCI/User Interface Design; Information Security; Machine Learning; Network Security; Software Engineering.

  • Autonomous Vehicle Safety Solutions

    Foundations, Technologies, and Prospects for the Future
    • 1st Edition
    • Aparna Kumari
    • English
    Autonomous Vehicle Safety Solutions: Foundations, Technologies, and Prospects for the Future addresses the dynamically evolving state of the art that traverses and brings together automotive engineering, electronics engineering, and computer science. Its technical overview of smart vehicles' capabilities, propelled by headway in artificial intelligence and sensor technologies, enables in-depth understanding of the safety-assurance complexities that guide their design and operation.The comprehensive volume distinguishes itself for its treatment of several exciting, emerging opportunities and trends, including machine learning algorithms, V2X connectivity, and cybersecurity. Up-to-date applications are featured through practical examples and expert insights, bringing additional value to a discourse which underscores the critical need for ongoing safety advancements and adaptability in the fast-moving context of autonomous driving systems, with their related implications on sustainability and society as a whole.The outcome is a cornerstone resource for academia and industry alike that encourages further transformative, interdisciplinary investigations to bring safety solutions to maturity and subsequent rigorous testing for validation standards to be defined, thus realizing, in a future not distant from now, a scenario where self-driving vehicles can co-exist seamlessly with traditional modes of transportation and also integrate reliably, efficiently, and without risks within the larger infrastructure.
  • Up and Running with AutoCAD 2027

    2D and 3D Drawing, Design and Modeling
    • 1st Edition
    • Robert C. Kaebisch
    • English
    Up and Running with AutoCAD® 2027: 2D and 3D Drawing, Design and Modeling presents a combination of step-by-step instructions, examples, and insightful explanations. The book emphasizes core concepts and practical application of AutoCAD in engineering, architecture, and design. Equally useful in instructor-led classroom training, self-study, or as a professional reference, the book is written by a long-time AutoCAD professor and instructor with the user in mind. To improve student learning, the early chapters have been revised and expanded with additional assignments, more explicit step-by-step guidance for the earliest assignments, improved readability, and a new concise drafting fundamentals reference section focusing on orthographic projection, basic standards, and naming conventions.
  • GeoAI for Earth Observation Imagery

    Fundamentals and Practical Applications
    • 1st Edition
    • Dalton Lunga + 1 more
    • English
    GeoAI for Earth Observation Imagery: Fundamentals and Practical Applications comprehensively covers methodologies of AI and Machine Learning applications of image processing for Earth Observation (EO) Imagery. As traditional image processing methods face challenges with handling vast volumes of EO imagery, leading to efficiencies and limitations when extracting meaningful insights, AI-driven approaches can enhance the efficiency, accuracy, and scalability of image processing. Chapters cover essential methodologies including atmospheric compensation, image enhancement techniques like deblurring and superresolution, and advanced analysis methods such as semantic segmentation and object detection.Cutting-ed... approaches to computing, automating, and optimizing image processing tasks are also covered. Additionally, emerging trends in GeoAi and their implication on future research are reviewed. The book serves as an essential guide for navigating the complexities of spatial data and equips readers with knowledge to enhance their analytical capabilities.
  • Deep Learning in Bioinformatics

    Techniques and Applications in Practice
    • 2nd Edition
    • Habib Izadkhah
    • English
    Deep Learning in Bioinformatics: Techniques and Applications in Practice, Second Edition explores how deep learning can be utilized for addressing important problems in bioinformatics, including drug discovery, de novo molecular design, sequence analysis, protein structure prediction, gene expression regulation, protein classification, biomedical image processing and diagnosis, biomolecule interaction prediction, and in systems biology. The book also presents theoretical and practical successes of deep learning in bioinformatics, pointing out problems and suggesting future research directions. This updated edition includes several new chapters, applications, and examples for new Deep Learning advances and techniques.Dr. Izadkhah provides valuable insights and will help researchers use deep learning techniques in their biological and bioinformatics studies.
  • Advances in Multimodal Large Language Models for Healthcare

    Methods and Applications
    • 1st Edition
    • Hari Mohan Pandey + 4 more
    • English
    Advances in Multimodal Large Language Models for Healthcare: Methods and Applications provides valuable insights on Large Language Models in healthcare applications for researchers, academics, and practitioners. The book explains key concepts, including artificial intelligence, machine learning, deep learning, and the evolution of neural networks and transformer models. It then covers generative AI and LLMs for a wide spectrum of healthcare applications, including mental health, clinical decision support, interactive system design, and sensitive analysis. Readers will find this to be a valuable deep dive into the emergent intersection of LLMs and health care, with guidance into applications, technical and programming methods, and more.Although LLMs have shown some promising results in the healthcare sector, numerous challenges need to be addressed before they can be used in patient care. The two key issues with the adoption of LLMs regarding healthcare settings are reliability, transparency, interpretation of results and bias (data and algorithm) management. Unless properly and adequately validated, there may be incorrect medical information provided by the LLM-based systems, which can lead to misdiagnosis or hazardous treatment errors. At this point, LLMs have not only been used for decision making or documentation, they have also proven to be useful in patient engagement through QA systems, medical chatbots, and virtual healthcare.
  • Deep Learning Assessment of Neurological Imaging

    • 1st Edition
    • Tripti Goel + 3 more
    • English
    Deep Learning Assessment of Neurological Imaging provides an introduction to deep learning structures and pre-processing methods for detecting MRI anomalies. It also provides a comprehensive account of deep learning research on MRI images for Alzheimer's disease, Parkinson's disease, and schizophrenia, and a discussion on current research issues and future objectives. The book is a valuable resource to guide new entrants in the field to make a meaningful impact in their development efforts. The book concludes with a brief overview of the problems discussed and potential future advancements in the field.
  • Digital Supply Chain Transformation

    Implementing Technology, Analytics, and Data-Driven Solutions
    • 1st Edition
    • Vinaytosh Mishra
    • English
    Digital Supply Chain Transformation: Implementing Technology, Analytics, and Data-Driven Solutions delves into the intricate world of supply chain management, emphasizing the role of digital transformation in modern supply chains. Through a blend of theoretical learning and practical applications, readers will gain a deep understanding of foundational supply chain principles while exploring emerging trends and technologies reshaping the industry. Topics such as system dynamics modelling, machine learning, artificial intelligence, and end-to-end visibility are explored in-depth, equipping readers with the tools and knowledge needed to excel in the rapidly evolving landscape of supply chain management. Readers will learn how comprehend core principles and elements of supply chain management and its pivotal role in businesses and industries, recognize the significance of digital transformation in supply chains, understand the tools, technologies, and strategies essential for a successful transformation, evaluate the importance of end-to-end supply chain visibility, employ methods and technologies to enhance this visibility in practical scenarios, and apply system dynamics modeling techniques to address complex supply chain problems to optimize supply chain processes, and much more.
  • Digital Twins

    Core Principles and AI Integration
    • 1st Edition
    • Bedir Tekinerdogan + 1 more
    • English
    Digital Twins: Core Principles, System Engineering, and AI Integration provides a comprehensive overview of digital twin technology, a cutting-edge innovation that bridges the physical and digital worlds. The book addresses common challenges such as data integration, security, scalability, and the alignment of digital twin models with actual physical processes. After presenting core concepts of digital twins for software engineering, the book discusses integration with advanced digital solutions such as AI, IoT, Cloud computing, Big Data Analytics, and Extended Reality (XR). Next, the authors provide readers with a thorough presentation of digital twins' applications in a variety of settings and industry/research topics.Finally, the book concludes with a discussion of challenges and solutions, along with future trends in digital twins research and development. As digital twin technology evolves, its integration with various advanced digital solutions is becoming essential for achieving real-time insights and autonomous decision-making. Challenges include understanding the interoperability of these technologies, managing data complexity, ensuring security, and optimizing for low-latency environments.
  • Federated Learning

    Foundations and Applications
    • 1st Edition
    • Rajkumar Buyya + 2 more
    • English
    Federated Learning: Foundations and Applications provides a comprehensive guide to the foundations, architectures, systems, security, privacy, and applications of federated learning. Sections cover fundamental concepts, including machine learning, deep learning, centralized learning, and distributed learning processes. The book then progresses to coverage of the architectures, algorithms, and system models of Federated Learning, as well as security, privacy, and energy-efficiency techniques. Finally, the book presents various applications of Federated Learning through real-world case studies, illustrating both centralized and decentralized Federated Learning.Federated Learning has become an increasingly important machine learning technique because it introduces local data analysis within clients and requires exchange of only model parameters between clients and servers, hence the addition of this new release is ideal for those interested in the topics presented.
  • Intelligent Cyber-Physical Systems for Sustainable Healthcare

    • 1st Edition
    • Vandana Bajaj + 5 more
    • English
    Intelligent Cyber-Physical Systems for Sustainable Healthcare addresses the integration of emerging technologies like Virtual Reality, Smart Robotics, and Human-Computer Interaction, which are crucial for maximizing digital health's potential. The book includes case studies that highlight challenges faced by medical practitioners and industry professionals, providing valuable insights for designing sustainable iCPS solutions. Aimed at biomedical engineers, researchers, and industry professionals, it offers guidance for developing practical applications in sustainable healthcare. Additionally, shared, cross-disciplinary experiences assist engineers with less clinical expertise in enhancing healthcare applications in the intelligent digital health sector. Overall, case studies illustrate past challenges in the healthcare industry and present effective solutions to overcome them, making the book a comprehensive resource for advancing sustainable healthcare practices.