Quantum Communication and Cryptography introduces readers to the theory of quantum cryptography, with a focus will on quantum key distribution (QKD) and more advanced quantum cryptographic protocols beyond QKD. It contains a brief introduction to the field of modern cryptography that is needed to fully appreciate and understand how quantum cryptographic systems are proven secure, and how they can be safely used in combination with current day classical systems. Readers are then introduced to quantum key distribution (QKD) - perhaps the most celebrated, and currently the most practical, of quantum cryptographic techniques.Basic protocols are described, and security proofs are given, providing readers with the knowledge needed to understand how QKD protocols are proven secure using modern, state- of-the-art definitions of security. Following this, more advanced QKD protocols are discussed, along with alternative quantum and classical methods to improve QKD performance. Finally, alternative quantum cryptographic protocols are covered, along with a discussion on some of the practical considerations of quantum secure communication technology. Throughout, protocols are described in a clear and consistent manner that still provides comprehensive, theoretical proofs and methods.
Digital Transformation and Equitable Global Health: A Future-Ready Perspective presents a collective body of knowledge and global experiences that demonstrate current status and future trends in the use of exponential technologies and their potential for poverty reduction, improving health outcomes, strengthening health systems, and transforming traditional development aid structures. The book uses a translational innovation perspective to guide the reader—regardless of their area of expertise—on the rationale behind the co-creation of human-centered, affordable, and sustainable digital solutions.It addresses the interest of professionals from multiple areas (e.g., technology, health, social development, global financing), and it is a valuable resource for professionals, social scientists, practitioners, researchers, instructors, and undergraduate and graduate students interested in understanding the challenges and complexities of global public health and the applied uses of health technologies for equitable access to primary health care and universal health coverage.
The study of one-shot devices such as automobile airbags, fire extinguishers, or antigen tests, is rapidly becoming an important problem in the area of reliability engineering. These devices, which are destroyed or must be rebuilt after use, are a particular case of extreme censoring, which makes the problem of estimating their reliability and lifetime challenging. However, classical statistical and inferential methods do not consider the issue of robustness.Statistical Modeling and Robust Interference for One-shot Devices offers a comprehensive investigation of robust techniques of one-shot devices under accelerated-life tests. With numerous examples and case studies in which the proposed methods are applied, this book includes detailed R codes in selected chapters to help readers implement their own codes and use them in the proposed examples and in their own research on one-shot devicetesting data. Researchers, mathematicians, engineers, and students working on acceleratedlife testing data analysis and robust methodologies will find this to be a welcome resource.
Quantum Process Algebra introduces readers to the algebraic properties and laws for quantum computing. The book provides readers with all aspects of algebraic theory for quantum computing, including the basis of semantics and axiomatization for quantum computing. With the assumption of a quantum system, readers will learn to solve the modelling of the three main components in a quantum system: unitary operator, quantum measurement, and quantum entanglement, with full support of quantum and classical computing in closed systems. Next, the book establishes the relationship between probabilistic quantum bisimilarity and classical probabilistic bisimilarity, including strong probabilistic bisimilarity and weak probabilistic bisimilarity, which makes an axiomatization of quantum processes possible. With this framework, quantum and classical computing mixed processes are unified with the same structured operational semantics. Finally, the book establishes a series of axiomatizations of quantum process algebras. These process algebras support nearly all main computation properties. Quantum and classical computing in closed quantum systems are unified with the same equational logic and the same structured operational semantics under the framework of ACP-like probabilistic process algebra. This unification means that the mathematics in the book can be used widely for verification of quantum and classical computing mixed systems, for example, most quantum communication protocols. ACP-like axiomatization also inherits the advantages of ACP, for example, and modularity means that it can be extended in an elegant way.
Fractional Modeling of Fluid Flow and Transport Phenomena focuses on mathematical and numerical aspects of fractional-order modeling in fluid flow and transport phenomena. The book covers fundamental concepts, advancements, and practical applications, including modeling developments, numerical solutions, and convergence analysis for both time and space fractional order models. Various types of flows are explored, such as single- and multi-phase flows in porous media, involving different fluid types like Newtonian, non-Newtonian, nanofluids, and ferrofluids. This book serves as a comprehensive reference on fractional-order modeling of fluid flow and transport phenomena, offering a single resource that is currently unavailable.Fractional-order modeling has gained traction in engineering and science, particularly in fluid dynamics and transport phenomena. However, its mathematical and numerical advancements have progressed relatively slowly compared to other aspects. Therefore, this book emphasizes the fractional-order modeling of fluid flow and transport phenomena to bridge this gap. Each chapter in the book delves into a specific topic closely related to the others, ensuring a cohesive and self-contained structure.
The Role of Blockchain in Disaster Management explores the architecture and implementation of existing blockchain-based IoT frameworks for the detection and prevention of disasters, along with the management of relative supply chains to protect against mismanagement of essential materials. The distributed nature of Blockchain helps to protect data from internal or external attacks, especially in disaster areas or times of crisis when database systems become overloaded and vulnerable to unauthorized access, manipulation, and disruption of critical services. This book can be used as a reference by graduate students, researchers, professors, and professionals in computer science, software design, and disaster management.
Digital Technology in Public Health and Rehabilitation Care: COVID Era provides an in-depth examination on how digital technology has impacted public health and rehabilitation during the COVID-19 pandemic. The book showcases the range of digital technology applications utilized in healthcare, including the use of mobile phones, computers, wearable and non-wearable technologies, sensors, 3D printers, robotics, Artificial Intelligence (AI), internet technologies, websites and apps, virtual and augmented realities, and computer games. With a wealth of case studies and insights, this book is an essential resource on the impact of digital technology on public health and rehabilitation services in the COVID-19 era. The COVID-19 pandemic had a major impact on the rehabilitation services available to those in need, particularly for older adults, people with physical and cognitive impairments, children with autism and ADHD, and individuals with physical and mental health disorders. In response to these challenges, the book focuses on the potential for advanced digital technologies to revolutionize public health and rehabilitation services, highlighting the need for researchers and healthcare professionals to work together to promote digital-based interventions.
Decision Making Models: A Perspective of Fuzzy Logic and Machine Learning presents the latest developments in the field of uncertain mathematics and decision science. The book aims to deliver a systematic exposure to soft computing techniques in fuzzy mathematics as well as artificial intelligence in the context of real-life problems and is designed to address recent techniques to solving uncertain problems encountered specifically in decision sciences. Researchers, professors, software engineers, and graduate students working in the fields of applied mathematics, software engineering, and artificial intelligence will find this book useful to acquire a solid foundation in fuzzy logic and fuzzy systems.Other areas of note include optimization problems and artificial intelligence practices, as well as how to analyze IoT solutions with applications and develop decision-making mechanisms realized under uncertainty.
Recent Trends in Swarm Intelligence Enabled Research for Engineering Applications focuses on recent, up-to-date technologies, combining other intelligent tools with swarm intelligence techniques to yield robust and failsafe solutions to real world problems. This book aims to provide audiences with a platform to learn and gain insights into the latest developments in hybrid swarm intelligence. It will be useful to researchers, engineers, developers, practitioners, and graduate students working in the major and interdisciplinary areas of computational intelligence, communication systems, computer networks, and soft computing.With the advent of data-intensive applications, the elimination of redundancy in disseminated information has become a serious challenge for researchers who are on the lookout for evolving metaheuristic algorithms which can explore and exploit the information feature space to derive the optimal settings for specific applications. Swarm intelligence algorithms have developed as one of the most widely used metaheuristic techniques for addressing this challenge in an effective way. Inspired by the behavior of a swarm of bees, these swarm intelligence techniques emulate the corresponding natural instincts to derive optimal solutions for data-intensive applications.
Fractional Calculus: Bridging Theory with Computational and Contemporary Advances is an authoritative and comprehensive guide that delves into the world of fractional calculus, offering a unique blend of theoretical foundations, numerical algorithms, practical applications, and innovative perspectives. This book explores the mathematical framework of fractional calculus and its relevance across various disciplines, providing readers with a deep understanding of this rapidly growing field. The author presents a rigorous yet accessible approach to fractional calculus, making it suitable for mathematicians, researchers, academics, graduate students, and professionals in engineering and applied sciences. The book covers a wide range of topics, including numerical methods for fractional calculus equations, fractional differential equations, fractal dynamics, and fractional control systems. It also explores applications in areas such as physics, engineering, signal processing, and data analysis. Fractional Calculus: Bridging Theory with Computational and Contemporary Advances equips readers with the necessary tools to tackle challenging problems involving fractional calculus, empowering them to apply these techniques in their research, professional work, or academic pursuits. The book provides a comprehensive introduction to the fundamentals of fractional calculus, explaining the theoretical concepts and key definitions in a clear and accessible manner. This helps readers build a strong foundation in the subject. The book then covers a range of numerical algorithms specifically designed for fractional calculus problems, explaining the underlying principles, step-by-step implementation, and computational aspects of these algorithms. This enables readers to apply numerical techniques to solve fractional calculus problems effectively. The book also provides examples that illustrate how fractional calculus is applied to solve real-world problems, providing readers with insights into the wide-ranging applications of the subject.