Fractional Modelling of Fluid Flow and Transport Phenomena focuses on mathematical and numerical aspects of fractional-order modeling in fluid flow and transport phenomena. The book covers fundamental concepts, advancements, and practical applications, including modeling developments, numerical solutions, and convergence analysis for both time and space fractional order models. Various types of flows are explored, such as single- and multi-phase flows in porous media, involving different fluid types like Newtonian, non-Newtonian, nanofluids, and ferrofluids. This book serves as a comprehensive reference on fractional-order modeling of fluid flow and transport phenomena, offering a single resource that is currently unavailable.Fractional-order modeling has gained traction in engineering and science, particularly in fluid dynamics and transport phenomena. However, its mathematical and numerical advancements have progressed relatively slowly compared to other aspects. Therefore, this book emphasizes the fractional-order modeling of fluid flow and transport phenomena to bridge this gap. Each chapter in the book delves into a specific topic closely related to the others, ensuring a cohesive and self-contained structure.
Fractional Calculus: Bridging Theory with Computational and Contemporary Advances is an authoritative and comprehensive guide that delves into the world of fractional calculus, offering a unique blend of theoretical foundations, numerical algorithms, practical applications, and innovative perspectives. This book explores the mathematical framework of fractional calculus and its relevance across various disciplines, providing readers with a deep understanding of this rapidly growing field. The author presents a rigorous yet accessible approach to fractional calculus, making it suitable for mathematicians, researchers, academics, graduate students, and professionals in engineering and applied sciences. The book covers a wide range of topics, including numerical methods for fractional calculus equations, fractional differential equations, fractal dynamics, and fractional control systems. It also explores applications in areas such as physics, engineering, signal processing, and data analysis. Fractional Calculus: Bridging Theory with Computational and Contemporary Advances equips readers with the necessary tools to tackle challenging problems involving fractional calculus, empowering them to apply these techniques in their research, professional work, or academic pursuits. The book provides a comprehensive introduction to the fundamentals of fractional calculus, explaining the theoretical concepts and key definitions in a clear and accessible manner. This helps readers build a strong foundation in the subject. The book then covers a range of numerical algorithms specifically designed for fractional calculus problems, explaining the underlying principles, step-by-step implementation, and computational aspects of these algorithms. This enables readers to apply numerical techniques to solve fractional calculus problems effectively. The book also provides examples that illustrate how fractional calculus is applied to solve real-world problems, providing readers with insights into the wide-ranging applications of the subject.
Smart Sensors Networks: Communication Technologies and Intelligent Applications explores the latest sensor and sensor networks techniques and applications, showing how networked wireless sensors are used to monitor and gather intelligence from our surrounding environment. It provides a systematic look at the unique characteristics of wireless sensor networks through their usage in a broad range of areas, including healthcare for the elderly, energy consumption, industrial automation, intelligent transportation systems, smart homes and cities, and more. The book shows how sensor-networks work and how they are applied to monitor our surrounding environment. It explores the most important aspects of modern sensors technologies, providing insights on the newest technologies and the systems needed to operate them. Readers will find the book to be an entry point for understanding the fundamental differences between the various sensor technologies and their use in for different scenarios. Indexing: The books of this series are submitted to EI-Compendex and SCOPUS
Physically Based Rendering: From Theory to Implementation, Third Edition, describes both the mathematical theory behind a modern photorealistic rendering system and its practical implementation. Through a method known as 'literate programming', the authors combine human-readable documentation and source code into a single reference that is specifically designed to aid comprehension. The result is a stunning achievement in graphics education. Through the ideas and software in this book, users will learn to design and employ a fully-featured rendering system for creating stunning imagery. This completely updated and revised edition includes new coverage on ray-tracing hair and curves primitives, numerical precision issues with ray tracing, LBVHs, realistic camera models, the measurement equation, and much more. It is a must-have, full color resource on physically-based rendering.
The emerging field of network science represents a new style of research that can unify such traditionally-diverse fields as sociology, economics, physics, biology, and computer science. It is a powerful tool in analyzing both natural and man-made systems, using the relationships between players within these networks and between the networks themselves to gain insight into the nature of each field. Until now, studies in network science have been focused on particular relationships that require varied and sometimes-incompatible datasets, which has kept it from being a truly universal discipline. Computational Network Science seeks to unify the methods used to analyze these diverse fields. This book provides an introduction to the field of Network Science and provides the groundwork for a computational, algorithm-based approach to network and system analysis in a new and important way. This new approach would remove the need for tedious human-based analysis of different datasets and help researchers spend more time on the qualitative aspects of network science research.
This book introduces the basic concepts of parallel and vector computing in the context of an introduction to numerical methods. It contains chapters on parallel and vector matrix multiplication and solution of linear systems by direct and iterative methods. It is suitable for advanced undergraduate and beginning graduate courses in computer science, applied mathematics, and engineering. Ideally, students will have access to a parallel or Vector computer, but the material can be studied profitably in any case.
The second part of this Handbook presents a choice of material on the theory of automata and rewriting systems, the foundations of modern programming languages, logics for program specification and verification, and some chapters on the theoretic modelling of advanced information processing.
This classic work, now available in paperback, concentrates on the basic models of queueing theory. It has a dual aim: to describe relevant mathematical techniques and to analyse the single server queue and its most important variants.
This work discusses the value of dynamic programming as a method of optimization for the sequential phenomena encountered in economic studies or in advanced technological programs such as those associated with space flights. The dynamic programs which are considered are defined for a deterministic universe, or one with probabilities; both categories are of equal importance in the practice of operations research or of scientific management.