Logical Design for Computers and Control Logical Design for Computers and Control gives an introduction to the concepts and principles, applications, and advancements in the field of control logic. The text covers topics such as logic elements; high and low logic; kinds of flip-flops; binary counting and arithmetic; and Boolean algebra, Boolean laws, and De Morgan's theorem. Also covered are topics such as electrostatics and atomic theory; the integrated circuit and simple control systems; the conversion of analog to digital systems; and computer applications and control. The book is recommended for engineering students who are in need of an introductory material to control logic and its applications on computers.
Intended both as a text for advanced undergraduates and graduate students, and as a key reference work for AI researchers and developers, Logical Foundations of Artificial Intelligence is a lucid, rigorous, and comprehensive account of the fundamentals of artificial intelligence from the standpoint of logic.The first section of the book introduces the logicist approach to AI--discussing the representation of declarative knowledge and featuring an introduction to the process of conceptualization, the syntax and semantics of predicate calculus, and the basics of other declarative representations such as frames and semantic nets. This section also provides a simple but powerful inference procedure, resolution, and shows how it can be used in a reasoning system.The next several chapters discuss nonmonotonic reasoning, induction, and reasoning under uncertainty, broadening the logical approach to deal with the inadequacies of strict logical deduction. The third section introduces modal operators that facilitate representing and reasoning about knowledge. This section also develops the process of writing predicate calculus sentences to the metalevel--to permit sentences about sentences and about reasoning processes. The final three chapters discuss the representation of knowledge about states and actions, planning, and intelligent system architecture.End-of-chapter bibliographic and historical comments provide background and point to other works of interest and research. Each chapter also contains numerous student exercises (with solutions provided in an appendix) to reinforce concepts and challenge the learner. A bibliography and index complete this comprehensive work.
The HOL system is a higher order logic theorem proving system implemented at Edinburgh University, Cambridge University and INRIA. Its many applications, from the verification of hardware designs at all levels to the verification of programs and communication protocols are considered in depth in this volume. Other systems based on higher order logic, namely Nuprl and LAMBDA are also discussed. Features given particular consideration are: novel developments in higher order logic and its implementations in HOL; formal design and verification methodologies for hardware and software; public domain availability of the HOL system. Papers addressing these issues have been divided as follows: Mathematical Logic; Induction; General Modelling and Proofs; Formalizing and Modelling of Automata; Program Verification; Hardware Description Language Semantics; Hardware Verification Methodologies; Simulation in Higher Order Logic; Extended Uses of Higher Order Logic. Academic and industrial researchers involved in formal hardware and software design and verification methods should find the publication especially interesting and it is hoped it will also provide a useful reference tool for those working at software institutes and within the electronics industries.
This monograph began life as a series of papers documenting five years of research into the logical foundations of Categorial Grammar, a grammatical paradigm which has close analogies with Lambda Calculus and Type Theory. The technical theory presented here stems from the interface between Logic and Linguistics and, in particular, the theory of generalized quantification. A categorical framework with lambda calculus-oriented semantics is a convenient vehicle for generalizing semantic insights (obtained in various corners of natural language) into one coherent theory.The book aims to demonstrate to fellow logicians that the resulting applied lambda calculus has intrinsic logical interest. In the final analysis, the idea is not just to `break the syntactic code' of natural languages but to understand the cognitive functioning of the human mind.