Nanocomposites for Environmental, Energy and Agricultural Applications presents a comprehensive overview of recent developments and prospects for nanocomposites in sustainable/green energy production, water/wastewater treatment as well as crop production.Each chapter introduces the fundamental principles as well as the design and characterization of nanocomposites for various applications. This includes detailed discussions of nanocomposites technology, including mixed matrix membranes for water and gas separation, nanohybrid catalysts for organic pollutants degradation and sustainable energy production as well as advanced nanocomposites of different structural dimensions (0D, 1D, 2D and 3D) for agricultural utilization.The book also discusses the challenges of lab-based research towards industrial implementation and related case studies based on pilot and full-scale processes. At the end of each chapter, future opportunities for improvement will be provided to offer researchers a new research direction. The book will be a practical guide for researchers and scientists working in the fields of nanotechnology and nanomaterials science and technology.
Additive Manufacturing of Polymer-based Composite Materials: Materials, Processes, and Properties presents the latest developments in additive manufacturing of polymer matrix composites and illustrates the large range of composite materials that can be obtained. Different technologies are presented with their own specificities such as: fused filament fabrication, wet fiber placement, stereolithography, and direct-ink-writing. Composites with chopped or continuous reinforcement, with synthetic or natural fibers, with thermoplastic or thermoset resin are compared and described in detail. Their thermal, physical, electrical, and mechanical properties are discussed.The book is dedicated to professionals involved in engineering design and production, as well as industrial communities who want to gain in-depth knowledge in the field of 3D printed composites.
Biophotonics and Biosensing brings together the knowledge of the basic principles of the field of light–biological tissue interaction, detection methods, data processing techniques, and research, diagnostic, and clinical applications. It is suitable for new entrants to the field, while also highlighting the latest developments for experts. This volume includes perspectives by leading experts from the biophotonics and biosensing, biomedical engineering, and data science communities.The book provides a basic grounding in the key theoretical principles and practical components of biophotonics and biosensing. Working principles of devices used in spectroscopy, microscopy, and optical sensing are presented, along with their application domains. The reader will learn about existing microscopy-based techniques used in biomedical applications for diagnosis and get to know different signal- and image-processing algorithms, including the state of the art in artificial intelligence approaches, as used in biophotonics. Finally, the book describes through concrete examples, including sample preparation and measurement approaches, how the field has developed, thanks to the integration of biophotonics and optical biosensing with advanced signal and image-processing.
Advanced Ceramics for Photocatalytic Membranes: Synthesis Methods, Characterization and Performance Analysis, and Applications in Water and Wastewater Treatment reviews recent research on the application and use of advanced ceramic materials in photocatalytic membrane processes. Sections cover current developments in photocatalytic membrane processes, synthesis and fabrication techniques using either physical or chemical approaches, diverse characterization methods and performance evaluations, and various types of environmental applications. The book is not only limited to the conceptual theory, it also gives a detailed review of recent progress in materials science. Readers will find applications in different disciplines, i.e., chemistry, physics, and mechanics that are critically required in modern science and engineering. This across-the-board briefing on the field is suitable for use as a major reference, as well as a knowledge sharing tool.
Structural Health Monitoring/Management (SHM) in Aerospace Structures provides readers with the spectacular progress that has taken place over the last twenty years with respect to the area of Structural Health Monitoring (SHM) Management. The SHM field encompasses transdisciplinary areas, including smart materials, sensors and actuators, damage diagnosis and prognosis, signal and image processing algorithms, wireless intelligent sensing, data fusion, and energy harvesting. This book focuses on how SHM techniques can be applied to aircraft, mechanical and civil engineering structures with particular emphasis on composite materials. This will be a valuable reference resource for R&D managers, materials scientists, and engineers working in the aerospace sector, for researchers and system designers working in industry, and for academia and government research agencies developing new systems for the SHM of aerospace, mechanical, and civil engineering structures.
Polymer Composites Derived from Animal Sources presents a systematic review of recent developments in this important research field. The book provides a thorough introduction to the various types of animal-based material resources currently available and discusses their morphology, extraction process, sustainability, formation, properties, and applications. Emphasis is placed on applications of polymer composites derived from wool, silk, chicken, bovine, marine life, and animal waste. Different types of processing techniques are discussed in detail as well as chemical modification, interfacial adhesion, and the structure-property relationship.The book will be a valuable reference resource for academic and industrial researchers, and materials scientists and engineers working on the research and development of natural-based composites derived from animal sources.
Advances in Environmental Electrochemistry provides a solid foundation in the basics of environmental electrochemistry, including redox reactions for contaminant removal, bio-electrochemical systems, electrochemical reactor design and the various electrochemistry-based techniques for practical wastewater degradation, environmental remediation and bioenergy recovery from waste. Advanced technologies acting as key indicators for addressing the various aspects of environmental electrochemistry are covered as well as comparisons to conventional methods and potential ways forward to their application in bioremediation technology. This book will be of interest to chemical engineers, environmental engineers, and all those interested in environmental biotechnology, bio-electrochemical systems, electrochemical sensors, advanced oxidation processes, biological wastewater treatment, and waste to energy recovery.
Aging and Durability of FRP Composites and Nanocomposites focuses on the latest developments in durability and long-term aging studies of composite materials, especially those used in civil and structural engineering applications. The book will be a valuable reference resource for materials scientists and engineers who want to learn more about the long-term service life and durability behavior of composites under different environmental conditions. The usage of composites is a broad and growing area of scientific research, especially in developed and developing countries. These materials are used in a broad range of applications in both structural and civil engineering sectors. In many of these applications, FRPs are exposed to one or more environmental influences, so they need to be designed to meet durability requirements to withstand even the harshest of environments.
Environmentally friendly sustainable biocomposites are obtained by using reinforcing agents, including natural fibers, particulates, nanomaterials, and polymer matrices, where at least one of these components is bio-based. Advances in Biocomposites and their Applications presents a detailed review of the latest progress in this important research field. The book begins with a brief introduction to the various types of reinforcing agents that are used for fabricating biocomposites. Processing and fabrication methods are then discussed in detail as well as their important mechanical, thermal, chemical, and biological properties. The book then goes on to discuss various mechanisms that can be used to improve these properties as well as various fields of application, including those in automotive, aerospace, marine, building materials, biomaterials, electrical, and electronic engineering sectors. The economic impact, safety, toxicity, and future directions for these materials are also discussed in detail. The book will be a valuable reference resource for academic and industrial researchers, materials scientists, and engineers, and all those working in the fields of polymer science, composite materials, and biocomposites.
Advanced Ceramic Coatings for Energy Applications covers recent developments in conducting electrodes, photovoltaics, solar cells, battery applications, fuel cells, electrocatalysts, photocatalysts, and supercapacitors. The book is one of four volumes that together provide a comprehensive resource in the field of Advanced Ceramic Coatings, also including titles covering: fundamentals, manufacturing, and classification; biomedical applications; and emerging applications. These books will be extremely useful for academic and industrial researchers and practicing engineers who need to find reliable and up-to-date information about recent progresses and new developments in the field of advanced ceramic coatings.Smart ceramic coatings contain multifunctional components are now finding application in transportation and automotive industries, in electronics, and energy, sectors, in aerospace and defense, and in industrial goods and healthcare. Their wide application and stability in harsh environments are only possible due to the stability of the inorganic components that are used in ceramic coatings.