Functionalization and Surface Science of Nanostructured Materials brings together cutting-edge techniques and strategies for surface functionalization of nanomaterials, supporting a range of novel applications. The book begins by presenting the fundamentals of surface science of nanostructured materials, introducing chemistry, physics, analysis, strategies, and fundamental methods. This is followed by detailed chapters focusing on simulation and theory, analytical tools, and novel strategies for fabrication, stabilization of nanostructures, and ligand exchange for hydrophilicity. Subsequent chapters provide in-depth coverage of applications across engineering, diagnostics, therapeutics, photovoltaics, photocatalysts, supercapacitors, and water treatment.This book will be of interest to all those with an interest in surface functionalization of nanomaterials for advanced applications, including researchers, advanced students, scientists, engineers, and R&D professionals.
High Strength Steels: Microstructure, Properties, and Applications summarizes the historical context and recent research directions of new high strength steels including high-strength low alloyed steel (HSLA), dual-phase (DP) steel, transformation-induced plasticity (TRIP) assisted steel, quenching and partitioning (Q&P) steel, medium-Mn steel, high-Mn twinning induced plasticity (TWIP) steel, bainitic steel, martensitic steel and maraging steel. In particular, the state-of-the-art understanding of the processing-microstructure-property relationship of these high-strength steels is the focus of this book. More importantly, the authors’ understanding on the deformation mechanisms of high-strength steels, which is based on their extensive research works over the last two decades, is thoroughly incorporated. Engineering applications of these materials are also discussed.High Strength Steels is suitable for new entrants or those working in related fields in academia and R&D in the subject areas of materials science and engineering and metallurgy.
Electrospun Nanofibers, Second Edition covers advances in the electrospinning process, including the characterization, testing, and modeling of electrospun nanofibers and electrospinning for particular fiber types and applications. This new edition includes sections on biomedical, tissue engineering, and drug applications of electrospun nanofibers, offering systematic and comprehensive coverage for academic researchers, industry professionals, and postgraduate students working in the field of fiber science. Electrospinning is the most commercially successful process for the production of nanofibers and rising demand is driving research and development in this field.Electrospinning is becoming more efficient and more specialized in order to produce particular fiber types such as bicomponent and composite fibers, patterned and 3D nanofibers, carbon nanofibers and nanotubes, and nanofibers derived from chitosan.
Treatise on Process Metallurgy: Volume Two, Process Phenomena provides academics with the fundamentals of the manufacturing of metallic materials, from raw materials into finished parts or products. In these fully updated volumes, coverage is expanded into four volumes, including Process Fundamentals, encompassing process fundamentals, structure and properties of matter; thermodynamic aspects of process metallurgy, and rate phenomena in process metallurgy; Processing Phenomena, encompassing interfacial phenomena in high temperature metallurgy, metallurgical process phenomena, and metallurgical process technology; Metallurgical Processes, encompassing mineral processing, aqueous processing, electrochemical material and energy processes, and iron and steel technology, non-ferrous process principles and production technologies, and more.The work distills the combined academic experience from the principal editor and the multidisciplinary four-member editorial board.
Databook of UV Stabilizers, Third Edition provides key information on the most frequently-used UV stabilizers, specifically catering to various industries including automotive, aerospace, polymers, plastics, rubber, cosmetics, food preservation, adhesives, coatings, medical equipment, packaging materials, solar cells, and more. Health and safety concerns are covered, including issues related to skin penetration, toxic degradation products, and the effect of converted radiation energy to heat on the skin’s temperature. The environmental effect of UV stabilizers is also discussed, with an emphasis on responsible use and disposal.Other data provided includes acronyms, molecular weight, odor, product form, transmittance, DOT hazard class, NFPA flammability/reactivity, aquatic toxicity, typical applications, processing methods, conditions to avoid, and much more for each stabilizer covered. The book is an excellent companion to the Handbook of UV Stabilizers. Both books supplement each other without repeating the same information – one contains data the other theory, mechanisms of action, practical effects, and implications of application.
Cellulose Based Hydrogels: Production, Properties and Applications provides detailed information on the properties, characterization techniques, preparation methodologies, applications, and commercial viability of cellulose based hydrogels.The book starts with an in-depth overview of the structure of cellulosic materials and their chemical modification approaches, covering various forms of cellulose, such as nanocrystalline and nanofibrillar cellulose. The following chapters focus on characterization methods of such materials, including advanced techniques, followed by a through discussion of the strategies for preparation of cellulose based hydrogels. Finally, applications of cellulosic structures in different fields such as biomedicine, environmental science, and energy are presented.This is a valuable resource for researchers and advanced students across polymer science, nanomaterials, and materials science, as well as scientists, engineers, and R&D professionals with an interest in sustainable materials and their composites/nanocomposites for advanced applications.
Aliphatic Alkylation in Petroleum Refining provides a fundamental understanding on the alkylation process, from molecular-level interfacial properties to macroscopic industry plants. Since the direct distillation of oil fractions does not satisfy the whole demand for fuel feedstocks, processes such as reforming, isomerization, and alkylation are needed to fulfill the market requirements within the gasoline pool. From the processes mentioned above, this book covers one of the most important refining processes due to the high quality of the alkylate with high research octane number (RON).Although the Aliphatic alkylation with H2SO4 and HF as catalysts have been industrialized for many years, there still exists lots of problems due to the complex heterogeneous reaction, such as the thermodynamics, reaction mechanism, molecular-level interfacial properties, and so on.
Combustion Synthesis: Processing and Materials provides a comprehensive introduction to combustion synthesis, from fundamentals to applications. The book offers an up‐to‐date reference for both researchers who have already been working on combustion synthesis and those entering this field. Focusing specifically on the materials science and engineering dimensions of combustion synthesis, the book thoroughly explores the most important processes and materials under investigation today. It offers a comprehensive overview of the field to beginners, while experienced readers will find detailed explanations and up‐to‐date descriptions of the state of the art of combustion synthesis, focused on a range of vital processes and materials.
Treatise on Process Metallurgy: Volume Four, Industrial Production provides academics with the fundamentals of the manufacturing of metallic materials, from raw materials into finished parts or products. In these fully updated volumes, coverage is expanded into four volumes, including Process Fundamentals, encompassing process fundamentals, structure and properties of matter; thermodynamic aspects of process metallurgy, and rate phenomena in process metallurgy; Processing Phenomena, encompassing interfacial phenomena in high temperature metallurgy, metallurgical process phenomena, and metallurgical process technology; Metallurgical Processes, encompassing mineral processing, aqueous processing, electrochemical material and energy processes, and iron and steel technology, non-ferrous process principles and production technologies, and more. The work distills the combined academic experience from the principal editor and the multidisciplinary four-member editorial board.
Nanofluids: Advanced Applications and Numerical Simulations combines the mathematical and numerical studies of nanofluids and their application to a range of applications. The book begins by introducing the principles of nanofluids, structures, types, properties, methods and stability. This is followed by a detailed chapter that explains a full range of numerical techniques for the modeling of nanofluids. Subsequent chapters offer in-depth coverage of target areas, including cooling and heating applications, micro-electric and magnetic devices, chemistry and oil recovery, biomedicine, renewable energy, and automotive engineering. Throughout the book, methods for numerical modelling are described in detail, with supporting equations, techniques, and applied examples. This is a valuable resource for advanced students, scientists, engineers, and R&D professionals working with nanofluids, simulation, and numerical methods for advanced applications, as well as researchers across nanotechnology, biomedicine, electronics, energy, chemistry, materials science and mechanical engineering.