Journals in Materials chemistry
Journals in Materials chemistry
- ISSN: 0927-796X
Materials Science and Engineering: R: Reports
Materials Science &Engineering R: Reports publishes the full spectrum of materials science and engineering. The journal aims to provide a high level of novelty and quality publishing both experimental and theoretical, providing general background information as well as a critical assessment on topics in a state of flux, providing a critical overview of the current issues in a well-defined area of immediate interest to materials scientists.The journal publishes original research papers and reviews. The journal will be launching a number of Special Issues on key themes in the Materials Sciences field: such as Energy Materials; Materials for Health; Materials Discovery; Innovation for High Value Manufacturing; and Sustainable Materials development. Please note that in keeping with the very high standard of papers in the Journal, suggested manuscripts need to display a high level of novelty and quality to be considered for submission.- ISSN: 0966-9795
Intermetallics
including complex structural and functional alloysThe journal Intermetallics is a platform for publishing innovative research which advances our understanding of the interrelationships among the structure, properties, and functionality of advanced complex metallic alloys, specifically intermetallic compounds, metallic glasses, and high entropy alloys.The journal reports the science and engineering of advanced metallic materials in the following aspects:Theories and experiments which address the relationship between properties and structure at all length scales;Physical modelling and numerical simulations which provide a comprehensive understanding of experimental observations;Methodo... to characterize the structure and chemistry of materials that correlate with properties;Technolog... applications resulting from the understanding of property-structure relationships in advanced metallic alloys;Novel and cutting-edge results warranting rapid communication.Specia... viewpoint issues on selected topics and review articles by invitation only.The journal will not consider submissions on the following topics:Materials including Pb-free solders, thermoelectric materials, liquid alloys, traditional steels, magnesium or aluminum alloys;Synthesis or processing methods, including welding and joining, or studies of phase transformations without any discussion of ensuing material properties;CALPHAD, calculation, or simulation results (ab initio, molecular dynamics, etc.) without comparison to experimental observations.- ISSN: 0892-6875
Minerals Engineering
Minerals Engineering is an international journal devoted to innovation and developments in mineral processing and extractive metallurgy. The journal aims to provide for the rapid publication of topical papers featuring the latest developments in the allied fields of mineral processing and extractive metallurgy. Minerals Engineering welcomes outstanding contributions focused on research and practical (operating) topics including but not limited to:Geometallurgy and process mineralogy Ore pretreatment and comminutionPhysical separation methods, such as sorting, gravity, magnetic, electrostatic separation, dewateringFlotation (including mineral surface chemistry, reagents, bubble-particle interactions, cell hydrodynamics)Chemic... methods, such as pyro-, bio-, hydro-, and electro-metallurgyEq... design and optimisation in mineral processingModelling, simulation and process control in mineral processingMachine learning, artificial intelligence and digital twins in mineral processingAnalytical techniques in mineral processingApplicatio... of physical and chemical methods in mineral processing for mineral/metal recyclingEnvironment... and industrial mineral materialsEnvironment... issues, such as process water management, mine tailings treatment and disposalThe journal publishes a series of Special Issues linked to MEI Conferences (https://www.min-eng...- ISSN: 0364-5916
Calphad
The design of industrial processes requires reliable thermodynamic data. CALPHAD (Computer Coupling of Phase Diagrams and Thermochemistry) aims to promote computational thermodynamics through development of models to represent thermodynamic properties for various phases which permit prediction of properties of multicomponent systems from those of binary and ternary subsystems, critical assessment of data and their incorporation into self-consistent databases, development of software to optimize and derive thermodynamic parameters and the development and use of databanks for calculations to improve understanding of various industrial and technological processes. This work is disseminated through the CALPHAD journal and its annual conference. Contributions of high quality in these and related fields, especially the fields of first-principles calculations, experimental measurements of thermochemical and phase equilibrium data, phase transformations, and the process and materials designs that the CALPHAD works are based on or used for, are welcome.Please see our Guide for Authors for information on article submission. If you require any further information or help, please visit our Support Center- ISSN: 0022-4596
Journal of Solid State Chemistry
Covering major developments in the field of solid state chemistry and related areas such as ceramics and amorphous materials, the Journal of Solid State Chemistry features studies of chemical, structural, thermodynamic, electronic, magnetic, and optical properties and processes in solids.Research Areas include:• Bonding in solids • Crystal chemistry • Crystal growth mechanisms • Synthesis of new compounds • Materials Chemistry • High-pressure processes • Magnetic properties of materials • Optical characterization of materials • Order-disorder • Phase equilibria and transformation mechanisms • Reactions at surfaces • Statistical mechanics of defect interactions • Structural studies • Transport phenomenaFeatures: • Rapid Communications: Brief articles that contain unique, exciting, and novel results with a clear requirement for rapid publication.Benefits to authors We also provide many author benefits, such as free PDFs, a liberal copyright policy, special discounts on Elsevier publications and much more. Please click here for more information on our author services.Please see our Guide for Authors for information on article submission. If you require any further information or help, please visit our Support Center- ISSN: 1369-7021
Materials Today
Materials Today is the flagship journal of the Materials Today family and is dedicated to covering the most innovative, cutting edge and influential work of broad interest to the materials science community.Having established the journal as one of the most highly respected sources of news and reviews in materials science over the last two decades, Materials Today has expanded its scope to cover ground breaking original research in materials science, and aims to become a leading forum in the field.The editors welcome comprehensive articles and short communications reporting breakthrough discoveries and major technical achievements as well as review articles from established leaders in engaging and rapidly developing fields within materials science and related disciplines.Material... Today offers authors rigorous peer review, rapid publication, and maximum visibility. The journal expects to accept only the most significant submitted manuscripts, but will provide very rapid evaluation to prevent publication delays.The Materials Today Family of journals publishes fundamental and applied research that address many of the world’s grand challenges.We publish research across all materials science disciplines, from incremental results to ground-breaking discoveries. Our journals offer multi- and inter-disciplinary platforms for collaboration and the cross-pollination of ideas to drive the field forwardFor more information on the wider Materials Today family visit elsevier.com/subject...- ISSN: 0022-3115
Journal of Nuclear Materials
The Journal of Nuclear Materials publishes high quality papers in materials research for nuclear applications, primarily fission reactors, fusion reactors, and similar environments including radiation areas of charged particle accelerators. Both original research and critical review papers covering experimental, theoretical, and computational aspects of either fundamental or applied nature are welcome.Papers submitted to JNM should exhibit a high degree of novelty and contain a significant discussion section that analyzes and interprets the results with outcomes that advance our understanding and push the field forward. Incremental research papers are not acceptable.The breadth of the field is such that a wide range of processes and properties in the field of materials science and engineering is of interest to the readership, spanning atom-scale processes, microstructures, thermodynamics, mechanical properties, physical properties, and corrosion, for example.Topics covered by JNM Fission reactor materials, including fuels, cladding, core structures, pressure vessels, coolant interactions with materials, moderator and control components, fission product behavior.Materials aspects of the entire fuel cycle.Materials aspects of the actinides and their compounds.Performanc... of nuclear waste materials; materials aspects of the immobilization of wastes.Fusion reactor materials, including first walls, blankets, insulators and magnets.Neutron and charged particle radiation effects in materials, including defects, transmutations, microstructures, phase changes and macroscopic properties.Interacti... of plasmas, ion beams, electron beams and electromagnetic radiation with materials relevant to nuclear systems.Topics NOT covered by JNMTopics in nuclear engineering and other areas not addressing materials, such as:Particle transport, cross-sections, shielding or isotope ratios (Radiation Physics and Chemistry; Annals of Nuclear Energy, Applied Radiation and Isotopes)Process engineering (Materials Science and Engineering A; Materials and Design)Leaching or chemical kinetics studies in aqueous, salt or other media (Hydrometallurgy; Chemical Engineering Science)Thermal hydraulics or properties of fluids (Nuclear Engineering and Design)Uranium extraction, uranium ore processing, and isotope separation processes (Nuclear Engineering and Design; Progress in Nuclear Energy)Fission or fusion reactor design and technology (Nuclear Engineering and Design; Fusion Engineering & Design)Plasma physics (Physics Letters A)Materials topics not addressing nuclear applications, such as general studies in:Physical and chemical properties including modeling and simulation (Materials Science and Engineering A; Materials Letters)Metallurgy (Journal of Alloys and Compounds; Materials Science and Engineering A)Corrosion (Corrosion Science)Welding and joining (Journal of Alloys and Compounds; Materials and Design)Ceramics (Journal of the European Ceramics Society; Ceramics international)- ISSN: 0263-4368
International Journal of Refractory Metals and Hard Materials
The International Journal of Refractory Metals and Hard Materials (IJRMHM) publishes original research articles concerned with all aspects of refractory metals and hard materials. Refractory metals are defined as metals with melting points higher than 1800 °C. These are tungsten, molybdenum, chromium, tantalum, niobium, hafnium, and rhenium, as well as many compounds and alloys based thereupon. Hard materials that are included in the scope of this journal are defined as materials with hardness values higher than 1000 kg/mm2, primarily intended for applications as manufacturing tools or wear resistant components in mechanical systems. Thus they encompass carbides, nitrides and borides of metals, and related compounds. A special focus of this journal is put on the family of hardmetals, which is also known as cemented tungsten carbide, and cermets which are based on titanium carbide and carbonitrides with or without a metal binder. Ceramics and superhard materials including diamond and cubic boron nitride may also be accepted provided the subject material is presented as hard materials as defined above.The journal seeks contributions that investigate novel alloy design concepts; studies of the relationships between chemical composition, microstructure, and properties; novel methods of characterization and testing, novel methods of synthesis and processing, especially those that result in improved or novel microstructures, leading in turn to improved properties and novel applications. Articles focus on methods and processes that reduce material and energy consumption, hence the cost of these materials will also be considered.The process technologies may include but are not limited to powder synthesis and production technologies (chemical methods, physical methods such as mechanical ball milling); powder compaction and shaping technologies including die compaction, powder injection molding, and 3D printing; and sintering and consolidation processes such as vacuum sintering, hot isostatic pressing, field assisted sintering, and other advanced hot consolidation techniques. However, manuscripts that focus on processes without a clear explanation on how the process can lead to improved microstructure and properties, or reduction of energy consumption and costs are likely discouraged.This journal also publishes articles dealing with the deposition process and the microstructure and the measurement of selected properties of coatings, provided the coating consists of a material from the groups defined above, and is applied on the surface of a refractory metal or hard material. For eligibility of such articles the material science aspect of the coatings and if applicable their interrelationship with the properties of the coatings is of prime importance. Papers lacking this focus are usually referred to other journals dedicated to surface coating or machining.IJRMHM aims to bridge the gap between pure research and the more practical aspects of production and properties. In that IJMHM will continue to provide a medium linking together material scientists, engineers, designers and manufacturers working in this field.- ISSN: 0925-9635
Diamond and Related Materials
DRM is a leading international journal that publishes new fundamental and applied research on all forms of diamond, the integration of diamond with other advanced materials and development of technologies exploiting diamond. The synthesis, characterization and processing of single crystal diamond, polycrystalline films, nanodiamond powders and heterostructures with other advanced materials are encouraged topics for technical and review articles. In addition to diamond, the journal publishes manuscripts on the synthesis, characterization and application of other related materials including diamond-like carbons, carbon nanotubes, graphene, and boron and carbon nitrides. Articles are sought on the chemical functionalization of diamond and related materials as well as their use in electrochemistry, energy storage and conversion, chemical and biological sensing, imaging, thermal management, photonic and quantum applications, electron emission and electronic devices.The International Conference on Diamond and Carbon Materials has evolved into the largest and most well attended forum in the field of diamond, providing a forum to showcase the latest results in the science and technology of diamond and other carbon materials such as carbon nanotubes, graphene, and diamond-like carbon. Run annually in association with Diamond and Related Materials the conference provides junior and established researchers the opportunity to exchange the latest results ranging from fundamental physical and chemical concepts to applied research focusing on the next generation carbon-based devices.Benefits to authors We also provide many author benefits, such as free PDFs, a liberal copyright policy, special discounts on Elsevier publications and much more. Please click here for more information on our author services.Please see our Guide for Authors for information on article submission. If you require any further information or help, please visit our Support Center- ISSN: 0079-6425
Progress in Materials Science
Progress in Materials Science publishes authoritative and critical reviews of recent advances in the science of materials and their exploitation in engineering and other applications. Emphasis is placed on the fundamental aspects of the subject, particularly those concerning microstructure and nanostructure and their relationship to properties (mechanical, chemical, electrical, magnetic, optical or biomedical). Authors of reviews in Progress in Materials Science are active leaders in materials science and have a strong scientific track record in the field of the review. Regular manuscripts are generally of greater length than those found in journals specialising in research papers. Snapshot reviews focus on a timely topic and are shorter (less than 8,000 words). The Editors kindly request that non-invited manuscripts are preceded by the submission of a proposal through the website.Particular areas of interest for review papers are, but are not limited to:Energy Materials: Materials for energy harvesting, storage, and conversion (solar cells, batteries, supercapacitors, fuel cells, etc,.), electrode materials, mechanism in electrochemical devices, battery design and optimizationQuantum and electronic materials: thin Film technology, materials for electronic devices, quantum dimensional materials (0D,1D and 2D), materials for sensors and detectors (optical, piezoelectric, biosensors)organic light emitting diodesSoft Matter and Biomaterials: polymers, materials for the human body, biomaterials for tissue models, materials for personalized medicine and healthcare, materials for drug delivery, bioinspired materials and synthesis conceptsAdvanced materials manufacturing: innovative fabrication techniques, process design and optimization, scalable production methods, wearable and flexible printed electronic devices, materials and techniques for additive manufacturingHigh-pe... materials: alloys and composites with optimized strength and toughness, advanced materials for extreme environments (e.g. space, arctic), emerging hybrid and composite Materials, high-entropy materialsAdvanced Characterization Techniques: novel techniques such as in-situ electron microscopy, operando spectroscopy, or advanced neutron scattering that reveal material behaviors under real-world conditionsSustainabl... materials science: materials for a circular economy, substitution of critical elements, engineered materials for environmental remediation, sustainable materials and synthesis conceptsComputationa... Materials Science and AI/ML: computational techniques for materials on all size and time scales, computation of phase diagrams, property and lifetime prediction, AI and ML techniques for high-throughput materials design and for advanced processing