Practical Sonochemistry: Applications of Power Ultrasound in Chemistry and Processing, Third Edition conveys the increasing growth in applications and equipment to power ultrasound. The book is written primarily for graduate students, postdoc researchers, and academics in applied chemistry and chemical engineering, as well as technicians and operators in relevant industry. Sonochemistry can do lots of amazing things in many different fields – but how and where do you start with applying it? This thoroughly updated edition offers a ground-up introduction to the fundamentals, applying power ultrasound to both lab and large-scale applications.The book answer questions such as does my laboratory have the equipment- what do I need? I have the equipment, but I have no idea how it works or how to use it- where do I start? I want to apply sonochemistry to a new reaction or processing method – what is the best approach? What types of sonochemistry equipment is available on the market and which is the best to choose? Can I scale up my reaction and if so, how do I do it, given that ultrasound is non-linear?
Modeling and Simulation of Sono-processes provides an overview of the mathematical modeling and numerical simulation as applied to sono-process-related phenomena, from the microscopic to the macroscopic scale, collecting information on this topic into one dedicated resource for the first time. It covers both fundamental and semi-empirical approaches and includes both physical and chemical effects.Single acoustic cavitation bubble and bubble population-related aspects are modeled mathematically, and numerical simulation procedures and examples are presented. In addition, the procedure involving semi-empirical modeling of sonochemical activity and sonochemical reactors is demonstrated and ultrasound assisted processes (hybrid processes) are demonstrated including several case studies.Modeling and Simulation of Sono-processes is written primarily for advanced graduates or early career researchers in physics, physical chemistry or mathematics who want to use mathematical modeling and numerical simulation of aspects related to acoustic cavitation bubble, bubble population, sonochemistry, sonochemical reactors and ultrasound-assisted processes.
Power Ultrasonics: Applications of High-Intensity Ultrasound, Second Edition provides a comprehensive reference on the fundamentals, processing, engineering, medical, food and pharmaceutical applications of ultrasonic processing. Chapters cover the fundamentals of nonlinear propagation of ultrasonic waves in fluids and solids, discuss the materials and designs of power ultrasonic transducers and devices, identify applications of high power ultrasound in materials engineering and mechanical engineering, food processing technology, environmental monitoring and remediation and industrial and chemical processing (including pharmaceuticals), medicine and biotechnology, and cover developments in ultrasound therapy and surgery applications.The new edition also includes recent advances in modeling, characterization and measurement techniques, along with additive manufacturing and micromanufacturing. This is an invaluable reference for graduate students and researchers working in the disciplines of materials science and engineering. In addition, those working on the physics of acoustics, sound and ultrasound, sonochemistry, acoustic engineering and industrial process technology, R&D managers, production, and biomedical engineers will find it useful to their work.
Sonochemistry and the Acoustic Bubble provides an introduction to the way ultrasound acts on bubbles in a liquid to cause bubbles to collapse violently, leading to localized 'hot spots' in the liquid with temperatures of 5000° celcius and under pressures of several hundred atmospheres. These extreme conditions produce events such as the emission of light, sonoluminescence, with a lifetime of less than a nanosecond, and free radicals that can initiate a host of varied chemical reactions (sonochemistry) in the liquid, all at room temperature. The physics and chemistry behind the phenomena are simply, but comprehensively presented. In addition, potential industrial and medical applications of acoustic cavitation and its chemical effects are described and reviewed. The book is suitable for graduate students working with ultrasound, and for potential chemists and chemical engineers wanting to understand the basics of how ultrasound acts in a liquid to cause chemical and physical effects.
The industrial interest in ultrasonic processing has revived during recent years because ultrasonic technology may represent a flexible “green” alternative for more energy efficient processes. A challenge in the application of high-intensity ultrasound to industrial processing is the design and development of specific power ultrasonic systems for large scale operation. In the area of ultrasonic processing in fluid and multiphase media the development of a new family of power generators with extensive radiating surfaces has significantly contributed to the implementation at industrial scale of several applications in sectors such as the food industry, environment, and manufacturing. Part one covers fundamentals of nonlinear propagation of ultrasonic waves in fluids and solids. It also discusses the materials and designs of power ultrasonic transducers and devices. Part two looks at applications of high power ultrasound in materials engineering and mechanical engineering, food processing technology, environmental monitoring and remediation and industrial and chemical processing (including pharmaceuticals), medicine and biotechnology.
Two key words define the scope of this book: 'ultrasound' and 'colloids'. Historically, there has been little real communication between practitioners in these two fields. Although there is a large body of literature devoted to ultrasound phenomenon in colloids, there is little recognition that such phenomena may be of real importance for both the development and applications of colloid science. On the other side, colloid scientists have not embraced acoustics as an important tool for characterizing colloids. The lack of any serious dialogue between these scientific fields is the biggest motivation behind this book.
Ultrasound has found an increasing number of applications in recent years due to greatly increased computing power. Ultrasound devices are often preferred over other devices because of their lower cost, portability, and non-invasive nature. Patients using ultrasound can avoid the dangers of radiological imaging devices such as x-rays, CT scans, and radioactive media injections. Ultrasound is also a preferred and practical method of detecting material fatique and defects in metals, composites, semiconductors, wood, etc.
While research on ultrasonics has been covered in earlier volumes of the Physical Acoustics series, Volumes 23 and 24 demonstrate the successful commercialization of devices and instruments arising from research in this area. These volumes will assist in the process of bringing research output into the marketplace to the benefit of customers.The chapters are liberally illustrated with pictures of actual commercial objects which have been or are in use. Included are Medical Ultrasonic Diagnostics, Nondestructive Testing (NDT), Acoustic Emission, Process Control, Surface Acoustic Wave (SAW) Devices, Frequency Control Devices, Research Instruments, Transducers, and Ultrasonic Microscopes. Also contained in the text are six essays covering technology transfer and commercialization.
While research on ultrasonics has been covered in earlier volumes of the Physical Acoustics series, Volumes 23 and 24 demonstrate the successful commercialization of devices and instruments arising from research in this area. These volumes will assist in the process of bringing research output into the marketplace to the benefit of customers.The chapters are liberally illustrated with pictures of actual commercial objects which have been or are in use. Included are Medical Ultrasonic Diagnostics, Nondestructive Testing (NDT), Acoustic Emission, Process Control, Surface Acoustic Wave (SAW) Devices, Frequency Control Devices, Research Instruments, Transducers, and Ultrasonic Microscopes. Also contained in the text are six essays covering technology transfer and commercialization.
This book is a comprehensive and practical guide to the use of ultrasonic techniques for the characterization of fluids. Focusing on ultrasonic velocimetry, the author covers the basic topics and techniques necessaryfor successful ultrasound measurements on emulsions, dispersions, multiphase media, and viscoelastic/viscoplastic materials. Advanced techniques such as scattering, particle sizing, and automation are also presented. As a handbook for industrial and scientific use, Ultrasonic Techniques for Fluids Characterization is an indispensable guide to chemists and chemical engineers using ultrasound for research or process monitoring in the chemical, food processing, pharmaceutical, cosmetic, biotechnology,and fuels industries.