Skip to main content

Books in Materials science

The Materials Science portfolio includes titles covering core knowledge and new research and applications across the field: nanotechnology and nanomaterials; polymers and plastics; textiles; composites and ceramics; electronic, magnetic, and optical materials; metals and alloys; biomaterials; surface and film science and coating technologies; materials chemistry, and more. In-depth coverage, innovative state-of-the-art approaches, and real-world application examples provide valuable, actionable insights for researchers, students, and the corporate sector. Elsevier's Materials Science portfolio places special attention on areas of current and emerging interest such as additive manufacturing / 3D printing, graphene and 2D materials, smart materials, biomimetics... The content in Elsevier's Materials Science titles program addresses core challenges facing science and society: sustainable energy technologies, the circular economy, health and human welfare.

  • High Tc Superconductor Thin Films

    • 1st Edition
    • L. Correra
    • English
    Interdisciplinary research on superconducting oxides is the main focus of the contributions in this volume. Several aspects of the thin film field from fundamental properties to applications are examined. Interesting results for the Bi system are also reviewed. The 132 papers, including 8 invited, report mainly on the 1-2-3 system, indicating that the Y-Ba-Cu-O and related compounds are still the most intensively studied materials in this field. The volume attests to the significant progress that has been made in this field, as well as reporting on the challenging problems that still remain to be solved.
  • The Elements of Polymer Science and Engineering

    An Introductory Text for Engineers and Chemists
    • 1st Edition
    • Alfred Rudin
    • English
    This introductory text is intended as the basis for a two or three semester course in synthetic macromolecules. It can also serve as a self-instruction guide for engineers and scientists without formal training in the subject who find themselves working with polymers. For this reason, the material covered begins with basic concepts and proceeds to current practice, where appropriate.
  • Synthesis, Crystal Growth and Characterization

    • 1st Edition
    • K. Lal
    • English
    Synthesis, Crystal Growth and Characterization presents the proceedings of the International School on Synthesis, Crystal Growth and Characterization of Materials for Energy Conversion and Storage, held on October 12-23, 1981, at the National Physical Laboratory in New Delhi, India. The book consists of lectures by distinguished scientists from around the world who tackle different aspects of synthesis, crystal growth, characterization of materials, energy conversion, and energy storage. Organized into four parts encompassing 26 chapters, the book begins with an overview of the synthesis of materials at high temperatures and pressures before turning to a discussion of how macrocrystalline and amorphous silicon is prepared. It then looks at fundamental principles underlying the process of crystal growth, both from the vapor phase and from melt, and methodically introduces the reader to the different techniques used to characterize materials, including neutron scattering and electron transport. The next chapters focus on point defects and aggregates that influence the critical electronic properties of semiconducting materials, X-ray diffraction studies of strains and stresses in thin films used in solid-state devices, and electron spectroscopic studies of solid surfaces. The book also considers the role of physics in microelectronics and vice versa, fast ion transport in solids, and the concept of Syadvada in relation to modern physics. This volume is a valuable resource for participants of the International School on Synthesis, Crystal Growth and Characterization of Materials for Energy Conversion and Storage, as well as active researchers working in areas related to the field.
  • Radiation Effects Computer Experiments

    • 1st Edition
    • J.R. Beeler
    • English
    Defects in Solids, Volume 13: Radiation Effects Computer Experiments provides guidance to persons interested in learning how to develop and use computer experiment programs to simulate defect production and annealing in solids. The book first elaborates on computer experiment methods and outline of defect properties computations. Topics include metal models used in defect property example calculations; configuration energy computation procedure; migration energy computation procedure; dynamical method; and Monte Carlo method. The publication also examines vacancies and divacancies and self interstitials. The manuscript takes a look at impurity atoms, defect migration, and vacancy clusters. Discussions focus on heterogeneous nucleation of vacancy clusters and voids, vacancy and divacancy migration, substitutional metallic large impurity atom, and vacancy clusters in face-centered cubic metals. The publication also tackles binary collision approximation cascade program construction and collision cascades and displacement spikes. The text is a valuable source of information for readers wanting to develop and use computer experiment programs to copy defect production and annealing in solids.
  • Selected Topics in Group IV and II-VI Semiconductors

    • 1st Edition
    • Volume 54
    • E.H.C. Parker + 4 more
    • English
    This book contains the proceedings of two symposia which brought together crystal growers, chemists and physicists from across the world. The first part is concerned with silicon molecular beam epitaxy and presents an overview of the most research being done in the field.Part two discusses the problems dealing with purification, doping and defects of II-VI materials, mainly of the important semiconductors CdTe and ZnSe. The focus is on materials science issues which are the key for a better understanding of these materials and for any industrial application.
  • Computed Electron Micrographs And Defect Identification

    • 1st Edition
    • A.K. Head
    • English
    Computed Electron Micrographs and Defect Identification illustrates a technique for identifying defects in crystalline solids by the comparison of their images, which are produced in the electron microscope, with corresponding theoretical images. This book discusses the diffraction of electrons by a crystal; the two-beam dynamical equations; the absorption parameters; the deviation of the crystal from the Bragg reflecting position; the extinction distance; the displacement vector; and the foil normal. Chapter three presents the experimental techniques for determination of beam direction, defect line normal, foil normal, foil thickness, and extinction distance. Chapters four to seven explore ONEDIS and TWODIS and their principles. Chapters eight and nine focus on the application and limitations of the technique, while the last chapter explores the different computer programs related to the technique. Post-graduate students, as well as researchers using transmission electron microscopy for studying defects in crystalline solids, will find this book invaluable.
  • Introduction to Solid State Electronics

    • 2nd Edition
    • F.F.Y. Wang
    • English
    This textbook is specifically tailored for undergraduate engineering courses offered in the junior year, providing a thorough understanding of solid state electronics without relying on the prerequisites of quantum mechanics. In contrast to most solid state electronics texts currently available, with their generalized treatments of the same topics, this is the first text to focus exclusively and in meaningful detail on introductory material. The original text has already been in use for 10 years. In this new edition, additional problems have been added at the end of most chapters. These problems are meant not only to review the material covered in the chapter, but also to introduce some aspects not covered in the text.An amended Solutions Manual is in preparation.
  • Interlaminar Response of Composite Materials

    • 1st Edition
    • Volume 5
    • N.J. Pagano
    • English
    This book presents the topics of major importance toward understanding the most feared failure mode in composite laminates, namely delamination. There are few books at present that describe the phenomenon of composite laminate failure by delamination in such detail.Written by pioneers and principal researchers in various aspects of composite delamination, starting from basic principles to the most current research findings, the work provides a complete study of the theoretical and experimental aspects of composite delamination in one volume.
  • Ballistic Materials and Penetration Mechanics

    • 1st Edition
    • Roy Laible
    • English
    Ballistic Materials and Penetration Mechanics deals with ballistically protective materials and penetration mechanics. The book discusses historical and practical considerations of ballistic protection, including metallic armor, as well as ballistic testing methodology, the ability of a protective material to stop or slow down a particular projectile, and the theoretical aspects of penetration mechanics. It also highlights the importance of stress wave analysis in the penetration and spalling phenomena. Organized into 12 chapters, this volume begins with an overview of the history of the armor and the modern helmet. It proceeds with a discussion of variations in ballistic test methods, errors in test methods, and the importance of the hardness and geometry of both the target and the projectile. The next chapters focus on the importance of fibrous armor, materials that are visually transparent and resistant to penetration by high-energy projectiles and fragments, and transparent armor and ceramic composite armor. The reader is also introduced to materials used in the design of metallic armor, the role of stress waves in the penetration problem, and the use of computer simulation to analyze ballistic impact experiments. The book looks at numerical techniques for modeling hypervelocity impact and concludes with a chapter on the penetration mechanics of textile structures. This book is a valuable resource for scientists working at government, industrial, and university laboratories, as well as law enforcement officers and others who want information on materials that provide the best protection against damage from impacts, explosions, and bullets.
  • Frontiers of Materials Research: Electronic and Optical Materials

    Proceedings of the symposia N: Frontiers of Materials Research, A: High Tc Superconductors, and D: Optoelectronic Materials and Functional Crystals of the C-MRS International 1990 Conference Beijing, China, 18 – 22 June 1990
    • 1st Edition
    • Meiying Kong
    • English
    Frontiers of Materials Research/Electronic And Optical Materials: Volume I is part of a five-volume compilation of the proceedings of C-MRS International 1990 Conference held in Beijing, China. The said conference discusses the areas of research in materials science. The book is divided into three parts. Part 1 covers topics involved in the development and progress of materials such as the focused beam ion; intermetallic compounds; polymers; and the application of computers in the field. Part 2 includes studies related to high Tc superconductors such as methods related to the field; the effects of oxygen and partial pressure on the properties of superconducting; and the study of superconductivity and crystallography. Part 3 presents papers related optoelectronic materials and functional crystals, which are mostly about the growth, properties, and uses of the different crystals being studied in each paper. The text is recommended for scientists and engineers who would like to know more about the field of materials science, especially those who would like to be involved in materials research.