Skip to main content

Books in Materials science

The Materials Science portfolio includes titles covering core knowledge and new research and applications across the field: nanotechnology and nanomaterials; polymers and plastics; textiles; composites and ceramics; electronic, magnetic, and optical materials; metals and alloys; biomaterials; surface and film science and coating technologies; materials chemistry, and more. In-depth coverage, innovative state-of-the-art approaches, and real-world application examples provide valuable, actionable insights for researchers, students, and the corporate sector. Elsevier's Materials Science portfolio places special attention on areas of current and emerging interest such as additive manufacturing / 3D printing, graphene and 2D materials, smart materials, biomimetics... The content in Elsevier's Materials Science titles program addresses core challenges facing science and society: sustainable energy technologies, the circular economy, health and human welfare.

  • Polyurethane Polymers: Blends and Interpenetrating Polymer Networks

    • 1st Edition
    • Sabu Thomas + 3 more
    • English
    Polyurethane Polymers: Blends and Interpenetrating Networks deals with almost all aspects of blends and IPNs formed by polyurethane, including the thermal, mechanical, morphological, and viscoelastic properties of each blend presented in the book. In addition, major applications related to these blends and IPNs are mentioned.
  • Metal Matrix Composites by Friction Stir Processing

    • 1st Edition
    • Ranjit Bauri + 1 more
    • English
    Metal Matrix Composites by Friction Stir Processing discusses the capabilities of utilizing friction stir processing (FSP) as a tool to manufacture new materials, such as composites. FSP is considered a tool for grain refinement. However, this work illustrates how FSP has a wider capability due to the material flow and mixing the process offers. This book highlights such aspects by demonstrating the ability of the process to incorporate a second phase and make metal matrix composites (MMCs). The book covers the current research on processing MMCs by FSP, and presents a novel approach of making ductile MMCs by FSP using metal particle reinforcements.
  • One-dimensional Nanostructures for PEM Fuel Cell Applications

    • 1st Edition
    • Shangfeng Du + 2 more
    • English
    One-dimensional Nanostructures for PEM Fuel Cell Applications provides a review of the progress made in 1D catalysts for applications in polymer electrolyte fuel cells. It highlights the improved understanding of catalytic mechanisms on 1D nanostructures and the new approaches developed for practical applications, also including a critical perspective on current research limits. The book serves as a reference for the design and development of a new generation of catalysts to assist in the realization of successful commercial use that have the potential to decarbonize the domestic heat and transport sectors. In addition, a further commercialization of this technology requires advanced catalysts to address major obstacles faced by the commonly used Pt/C nanoparticles. The unique structure of one-dimensional nanostructures give them advantages to overcome some drawbacks of Pt/C nanoparticles as a new type of excellent catalysts for fuel cell reactions. In recent years, great efforts have been devoted in this area, and much progress has been achieved.
  • Comprehensive Composite Materials II

    • 2nd Edition
    • Carl H. Zweben + 1 more
    • English
    Comprehensive Composite Materials II, Second Edition, Eight Volume Set is a one-stop reference work spanning the whole composites science field, covering such topics as fiber reinforcements and general theory of composites, polymer matrix composites, metal matrix composites, test methods, nondestructive evaluation and smart composites, design and application, and nanocomposites, multifunctional materials and smart materials. Detailed coverage is also given to the development and application of the principles of multi-scale mechanics and physical model-based design methods and the incorporation of mechanisms of deformation and fracture into predictive design equations that are useful for the design engineer. Extensive coverage of topics related to nanocomposites, including nanoscale reinforcements, such as single-wall and multi-wall nanotubes, graphene nanoplatelets, and nanodiamonds are also covered.
  • Thermo-Mechanical Modeling of Additive Manufacturing

    • 1st Edition
    • Michael Gouge + 1 more
    • English
    Thermo-mechanical Modeling of Additive Manufacturing provides the background, methodology and description of modeling techniques to enable the reader to perform their own accurate and reliable simulations of any additive process. Part I provides an in depth introduction to the fundamentals of additive manufacturing modeling, a description of adaptive mesh strategies, a thorough description of thermal losses and a discussion of residual stress and distortion. Part II applies the engineering fundamentals to direct energy deposition processes including laser cladding, LENS builds, large electron beam parts and an exploration of residual stress and deformation mitigation strategies. Part III concerns the thermo-mechanical modeling of powder bed processes with a description of the heat input model, classical thermo-mechanical modeling, and part scale modeling. The book serves as an essential reference for engineers and technicians in both industry and academia, performing both research and full-scale production. Additive manufacturing processes are revolutionizing production throughout industry. These technologies enable the cost-effective manufacture of small lot parts, rapid repair of damaged components and construction of previously impossible-to-produc... geometries. However, the large thermal gradients inherent in these processes incur large residual stresses and mechanical distortion, which can push the finished component out of engineering tolerance. Costly trial-and-error methods are commonly used for failure mitigation. Finite element modeling provides a compelling alternative, allowing for the prediction of residual stresses and distortion, and thus a tool to investigate methods of failure mitigation prior to building.
  • Industry Guide to Polymer Nanocomposites

    • 1st Edition
    • Günter Beyer
    • English
    In the last few years the subject of polymer nanocomposites has become a major field of materials research, aiming to study and control the properties of materials at dimensions of a few hundred nanometres, where unique phenomena enable novel applications. Both academia and industry are investigating these materials for many potential applications. Polymer nanocomposites under optimum nanostructuring conditions have shown great improvements in mechanical, thermal, flame retardancy, gas barrier and other properties. In a rapidly advancing field there are already a number of books that examine the theory and developments in particular areas, but no book to date has addressed the current state of knowledge and diversity of applications from an industrial viewpoint. This new book from Plastics Information Direct aims to fill this gap, and demonstrate to an industrial audience the current scope and potential benefits of polymeric nanocomposite applications. The book focuses on the development of polymer nanocomposites for commercial applications, and there are contributions from the industry and academia, which will enable the reader to understand why nanocomposites are already finding applications in the automotive area, the army, aerospace applications, the wire and cable industry and other market segments. The fillers for nanocomposites, their processing and toxicology are also reviewed.
  • Engineering Tools for Corrosion

    Design and Diagnosis
    • 1st Edition
    • Volume 68
    • Luciano Lazzari
    • English
    Engineering Tools for Corrosion: Design and Diagnosis proposes models and equations derived from theory. It includes discussions of the estimation of main corrosion parameters for corrosion rate, electrochemical constraints, thresholds limits and initiation time. The algorithms proposed are the conjugation of theory and engineering practice resulting from research and professional activities carried out by the author for almost four decades.
  • Biomaterials for Oral and Dental Tissue Engineering

    • 1st Edition
    • Lobat Tayebi + 1 more
    • English
    Biomaterials for Oral and Dental Tissue Engineering examines the combined impact of materials, advanced techniques and applications of engineered oral tissues. With a strong focus on hard and soft intraoral tissues, the book looks at how biomaterials can be manipulated and engineered to create functional oral tissue for use in restorative dentistry, periodontics, endodontics and prosthodontics. Covering the current knowledge of material production, evaluation, challenges, applications and future trends, this book is a valuable resource for materials scientists and researchers in academia and industry. The first set of chapters reviews a wide range of biomaterial classes for oral tissue engineering. Further topics include material characterization, modification, biocompatibility and biotoxicity. Part Two reviews strategies for biomaterial scaffold design, while chapters in parts three and four review soft and hard tissues.
  • Biomedical Composites

    • 2nd Edition
    • Luigi Ambrosio
    • English
    Biomedical Composites, Second Edition, provides revised, expanded, and updated content suitable for those active in the biomaterials and bioengineering field. Three new chapters cover modeling of biocomposites, 3D printing of customized scaffolds, and constructs and regulatory issues. Chapters from the first edition have been revised in order to provide up-to-date, comprehensive coverage of developments in the field. Part One discusses the fundamentals of biocomposites, with Part Two detailing a wide range of applications of biocomposites. Chapters in Part Three discuss the biocompatibility, mechanical behavior, and failure of biocomposites, while the final section looks at the future for biocomposites. Professor Luigi Ambrosio is the Director of the Institute for Composite and Biomedical Materials, Italy. He is a renowned scientist with expertise in biomedical composites and has published over 150 papers in international scientific journals and books, 16 patents, and over 250 presentations at international and national conferences.
  • Biomaterials

    A Systems Approach to Engineering Concepts
    • 1st Edition
    • Brian J. Love
    • English
    Biomaterials: A Systems Approach to Engineering Concepts provides readers with a systems approach to biomaterials and materials engineering. By focusing on the mechanical needs of implants, disease states, and current clinical needs, readers are encouraged to design materials and systems targeted at specific conditions, and to identify the impact of their proposed solutions. This inventive text is a useful resource for researchers, students, and course providers of biomaterials and biomedical engineering.