Agro-industrial Wastes as Feedstock for Enzyme Production: Apply and Exploit the Emerging and Valuable Use Options of Waste Biomass explores the current state-of-the-art bioprocesses in enzyme production using agro-industrial wastes with respect to their generation, current methods of disposal, the problems faced in terms of waste and regulation, and potential value-added protocols for these wastes. It surveys areas ripe for further inquiry as well as future trends in the field. Under each section, the individual chapters present up-to-date and in-depth information on bioprospecting of agro-industrial wastes to obtain enzymes of economic importance. This book covers research gaps, including valorization of fruit and vegetable by-product—a key contribution toward sustainability that makes the utmost use of agricultural produce while employing low-energy and cost-efficient bioprocesses. Written by experts in the field of enzyme technology, the book provides valuable information for academic researchers, graduate students, and industry scientists working in industrial-food microbiology, biotechnology, bioprocess technology, post-harvest technology, agriculture, waste management, and the food industry.
WEEE Recycling: Research, Development, and Policies covers policies, research, development, and challenges in recycling of waste electrical and electronic equipment (WEEE). The book introduces WEEE management and then covers the environmental, economic, and societal applications of e-waste recycling, focusing on the technical challenges to designing efficient and sustainable recycling processes—including physical separation, pyrometallurgical, and hydrometallurgical processes. The development of processes for recovering strategic and critical metals from urban mining is a priority for many countries, especially those having few available ores mining.
Industrial Wastewater Treatment, Recycling and Reuse is an accessible reference to assist you when handling wastewater treatment and recycling. It features an instructive compilation of methodologies, including advanced physico-chemical methods and biological methods of treatment. It focuses on recent industry practices and preferences, along with newer methodologies for energy generation through waste. The book is based on a workshop run by the Indus MAGIC program of CSIR, India. It covers advanced processes in industrial wastewater treatment, applications, and feasibility analysis, and explores the process intensification approach as well as implications for industrial applications. Techno-economic feasibility evaluation is addressed, along with a comparison of different approaches illustrated by specific case studies. Industrial Wastewater Treatment, Recycling and Reuse introduces you to the subject with specific reference to problems currently being experienced in different industry sectors, including the petroleum industry, the fine chemical industry, and the specialty chemicals manufacturing sector.
Industrial Waste Treatment Handbook provides the most reliable methodology for identifying which waste types are produced from particular industrial processes and how they can be treated. There is a thorough explanation of the fundamental mechanisms by which pollutants become dissolved or become suspended in water or air. Building on this knowledge, the reader will learn how different treatment processes work, how they can be optimized, and the most efficient method for selecting candidate treatment processes. Utilizing the most up-to-date examples from recent work at one of the leading environmental and science consulting firms, this book also illustrates approaches to solve various environmental quality problems and the step-by-step design of facilities.
With increasing government regulation of pollution, as well as willingness to levy punitive fines for transgressions, treatment of industrial waste is a important subject. This book is a single source of information on treatment procedures using biochemical means for all types of solid, liquid and gaseous contaminants generated by various chemical and allied industries. This book is intended for practicing environmental engineers and technologists from any industry as well as researchers and professors. The topics covered include the treatment of gaseous, liquid and solid waste from a large number of chemical and allied industries that include dye stuff, chemical, alcohol, food processing, pesticide, pharmaceuticals, paint etc. Information on aerobic and anaerobic reactors and modeling and simulation of waste treatment systems are also discussed.
An understanding of the fate and behaviour of organic chemicals, such as surfactants, in the environment is a prerequisite for the sustainable development of human health and ecosystems. As surfactants are being produced in huge amounts, it is important to have a detailed knowledge about their lifetime in the environment, their biodegradability in wastewater treatment plants and in natural waters, and their ecotoxicity. Parameters relevant for the assessment of long-term behaviour, such as interactions with hormonal systems need to be understood to avoid unexpected adverse effects to future generations of people and the environment. However, the identification and quantification of commercial surfactants in the environment is made more complicated and cumbersome because they comprise of tens to hundreds of homologues, oligomers and isomers of anionic, nonionic, cationic and amphoteric compounds.The EU-funded PRISTINE project (Priority surfactants and their toxic metabolites in wastewater effluents: An integrated study; ENV4-CT97-0494) provides the basis for the content of this title. It provides policy makers and industry with detailed information on analysis and concentrations of surfactants and their degradation products in the environment.In addition to a general introduction to surfactants, this book comprises a comprehensive variety of analytical techniques, including sample handling, for the analysis of surfactants in the aquatic environment. Readers will find all the necessary information for analyzing the different groups of surfactants, with special emphasis on transformation products. Quality assurance is also reported on in detail. Chapters on toxicity and risk assessment are also included and give a complete perspective on the surfactants problem in the aquatic environment.