Photonic Laser Propulsion offers a thrilling glimpse into the future of sustainable space travel by surveying one of the most significant breakthrough technologies to overcome the limitations of current propulsion systems based on conventional rocketry.Written by the pioneer of PLP, the book strives to establish a strong foundational understanding while delving into advanced theoretical concepts. Readers are guided through quantum mechanics, optical resonators, and radiation pressure that underpin this revolutionary thrust mechanism, to then be offered past experimental milestones and cutting-edge demonstrations that trace its evolution and validate its feasibility. A presentation of current application examples as well as long-term development pathways for interstellar commutes conclude the excursus, fostering curiosity and charting a course for further research exploration in this dynamic realm.Researchers both in academia and industry and a host of other technical audiences at all levels will think of this volume, which consolidates a growing body of knowledge surrounding PLP, as a key resource for their study or work to enable innovative space endeavors, including human civilization's expansion within our solar system or interstellar travel.
Interstellar Travel: Propulsion, Life Support, Communications, and the Long Journey addresses the technical challenges that must be overcome to make such journeys possible. Leading experts in the fields of space propulsion, power, communication, navigation, crew selection, safety and health provide detailed information about state-of-the-art technologies and approaches for each challenge, along with possible methods based on real science and engineering. This book offers in-depth, up-to-date and realistic technical and scientific considerations in the pursuit of interstellar travel and will be an essential reference for scientists, engineers, researchers and academics working on, or interested in, space development and space technologies. With a renewed interest in space exploration and development evidenced by the rise of the commercial space sector and various governments now planning to send humans back to the moon and to Mars, there is also growing interest in taking the next steps beyond the solar system and to the ultimate destination – planets circling other stars. With the rapid growth in the number of known exoplanets, people are now asking how we might make journeys to visit them.
Hybrid Rocket Propulsion Design Handbook provides system scaling laws, design methodologies, and a summary of available test data, giving engineers all the tools they need to develop realistic hybrid system designs.Important supporting theory from chemistry, thermodynamics, and rocket propulsion is addressed, helping readers from a variety of backgrounds to understand this interdisciplinary subject. This book also suggests guidelines for standardized reporting of test data, in response to difficulties researchers have in working with results from different research institutes.
Principles of Nuclear Rocket Propulsion, Second Edition continues to put the technical and theoretical aspects of nuclear rocket propulsion into a clear and unified presentation, providing an understanding of the physical principles underlying the design and operation of nuclear fission-based rocket engines. This new edition expands on existing material and adds new topics, such as antimatter propulsion, nuclear rocket startup, new fuel forms, reactor stability, and new advanced reactor concepts. This new edition is for aerospace and nuclear engineers and advanced students interested in nuclear rocket propulsion.
Space Micropropulsion for Nanosatellites: Progress, Challenges and Future features the latest developments and progress, the challenges faced by different researchers, and insights on future micropropulsion systems. Nanosatellites, in particular cubesats, are an effective test bed for new technologies in outer space. However, most of the nanosatellites have no propulsion system, which subsequently limits their maneuverability in space.
Fundamentals of Aeroacoustics with Applications to Aeropropulsion Systems from the Shanghai Jiao Tong University Press Aerospace series, is the go-to reference on the topic, providing a modern take on the fundamental theory and applications relating to prediction and control of all major noise sources in aeropropulsion systems. This important reference compiles the latest knowledge and research advances, considering both the physics of aerodynamic noise generation in aero-engines and related numerical prediction techniques. Additionally, it introduces new vortex sound interaction models, a transfer element method, and a combustion instability model developed by the authors. Focusing on propulsion systems from inlet to exit, including combustion noise, this new resource will aid graduate students, researchers, and R&D engineers in solving the aircraft noise problems that currently challenge the industry.
Principles of Nuclear Rocket Propulsion provides an understanding of the physical principles underlying the design and operation of nuclear fission-based rocket engines. While there are numerous texts available describing rocket engine theory and nuclear reactor theory, this is the first book available describing the integration of the two subject areas. Most of the book’s emphasis is primarily on nuclear thermal rocket engines, wherein the energy of a nuclear reactor is used to heat a propellant to high temperatures and then expel it through a nozzle to produce thrust. Other concepts are also touched upon such as a section devoted to the nuclear pulse rocket concept wherein the force of externally detonated nuclear explosions is used to accelerate a spacecraft. Future crewed space missions beyond low earth orbit will almost certainly require propulsion systems with performance levels exceeding that of today’s best chemical engines. A likely candidate for that propulsion system is the solid core Nuclear Thermal Rocket or NTR. Solid core NTR engines are expected to have performance levels which significantly exceed that achievable by any currently conceivable chemical engine. The challenge is in the engineering details of the design which includes not only the thermal, fluid, and mechanical aspects always present in chemical rocket engine development, but also nuclear interactions and some unique materials restrictions.
Liquid Acquisition Devices for Advanced In-Space Cryogenic Propulsion Systems discusses the importance of reliable cryogenic systems, a pivotal part of everything from engine propulsion to fuel deposits. As some of the most efficient systems involve advanced cryogenic fluid management systems that present challenging issues, the book tackles issues such as the difficulty in obtaining data, the lack of quality data and models, and the complexity in trying to model these systems. The book presents models and experimental data based on rare and hard-to-obtain cryogenic data. Through clear descriptions of practical data and models, readers will explore the development of robust and flexible liquid acquisition devices (LAD) through component-level and full-scale ground experiments, as well as analytical tools. This book presents new and rare experimental data, as well as analytical models, in a fundamental area to the aerospace and space-flight communities. With this data, the reader can consider new and improved ways to design, analyze, and build expensive flight systems.
Ballistic Missile and Aerospace Technology, Volume III: Propulsion, Space Science and Space Exploration covers the proceedings of the Sixth Symposium on Ballistic Missile and Aerospace Technology, held in University of Southern California, Los Angeles, on August 29-31, 1961. This book contains three parts encompassing 18 chapters that explore the components of the propulsion systems, space science and experiments, and exploration of the moon and planets. Part I demonstrates first the advantage of using factorial experimental designs for a wide variety of missile propulsion design problems. This topic is followed by an outline of the component designs of rocket design simulators and a systematic method for determination of ablation rates in a corrosive environment. This part also presents an analysis of the open cycle technique for the removal of afterheat from a nuclear rocket and the design conditions for convergent nozzles. Part II describes the determination of the magnetic dipole of TIROS II, a spin-stabilized meteorological satellite, as well as a method for the acquisition of meteorological data, which provides information not readily available on a global scale and/or in real time. Part III discusses the principles of small payload dropping for space exploration; the geological problems involved in the location of a lunar base; and the features of a planetary entry vehicle. This concluding part also examines the degree of radiation safety resulting from different lunar spacecraft design and mission operations and the feasibility of placing and maintaining space vehicles in the earth-moon libration points. Aerospace engineers and scientists will find this book invaluable.
Dr. H. S. Tsien (also known as Dr. Qian Xuesen), is celebrated as the leader of the research that produced China's first ballistic missiles, its first satellite, and the Silkworm anti-ship missile. This volume collects the scientific works of Dr. H. S. Tsien (also known as Dr. Qian Xuesen) and his co-authors, which published between 1938—1956 when he was studying and working in the United States as a graduate student, scientist and professor, when aeronautic exploration stepped up from low speed to high speed regimes and astronautic technology entered its infant stage.