Vyacheslav M. Zobin’s Introduction to Volcanic Seismology has steadily grown over time, offering a deeper look at the latest developments in volcanic seismology with each edition. As such, this new, fully updated fourth edition is simply titled Volcanic Seismology in a nod to the comprehensive nature it has achieved.Volcanic Seismology, Fourth Edition, covers all aspects of volcano seismology, specifically focusing on the latest studies and developments. This new edition expands to include recent seismic events in Kilauea (2018), La Soufriere (2020), and Hunga Tonga (2022).This book begins with an introduction and review of the fundamentals of volcanic seismology. After setting this foundation, several case studies in volcano-tectonic earthquakes are reviewed. This is followed by a detailed look at earthquake swarms, source properties and origins, and volcanic tremors. Different seismic signals are closely examined. The author then explores effusive and explosive activity along with lave dome growth and destruction. The book closes with an in-depth look at seismic monitoring as well as the natural seismicity of geothermal structures within volcanic environments.This essential text provides seismologists, volcanologists, and geophysicists a comprehensive review of all aspects of volcanic seismology.
GNSS Seismogeodesy: Theory and Applications combines GNSS and seismology theory and applications to offer both disciplines the background information needed to combine forces. It explores the opportunities for integrating GNSS and seismometers, as well as applications for earthquake and tsunami early warning applications. The book allows seismologists to better understand how GNSS positions are computed and how they can be combined with seismic data and allows geodesists to better understand how to apply GNSS to monitoring of crustal motion.This book is a valuable reference for researchers and students studying the interdisciplinary connection between GNSS geodesy and strong-motion seismology. It will also be ideal for anyone working on new approaches for monitoring and predicting geologic hazards.
Earth’s Core: Geophysics of a Planet’s Deepest Interior provides a multidisciplinary approach to Earth’s core, including seismology, mineral physics, geomagnetism, and geodynamics. The book examines current observations, experiments, and theories; identifies outstanding research questions; and suggests future directions for study. With topics ranging from the structure of the core-mantle boundary region, to the chemical and physical properties of the core, the workings of the geodynamo, inner core seismology and dynamics, and core formation, this book offers a multidisciplinary perspective on what we know and what we know we have yet to discover. The book begins with the fundamental material and concepts in seismology, mineral physics, geomagnetism, and geodynamics, accessible from a wide range of backgrounds. The book then builds on this foundation to introduce current research, including observations, experiments, and theories. By identifying unsolved problems and promising routes to their solutions, the book is intended to motivate further research, making it a valuable resource both for students entering Earth and planetary sciences and for researchers in a particular subdiscipline who need to broaden their understanding.
Earthquakes and Sustainable Infrastructure: Neodeterministic (NDSHA) Approach Guarantees Prevention Rather Than Cure communicates in one comprehensive volume the state-of-the-art scientific knowledge on earthquakes and related risks. Earthquakes occur in a seemingly random way and, in some cases, it is possible to trace seismicity back to the concept of deterministic chaos. Therefore, seismicity can be explained by a deterministic mechanism that arises as a result of various convection movements in the Earth’s mantle, expressed in the modern movement of lithospheric plates fueled by tidal forces. Consequently, to move from a perspective focused on the response to emergencies to a new perspective based on prevention and sustainability, it is necessary to follow this neodeterministic approach (NDSHA) to guarantee prevention, saving lives and infrastructure. This book describes in a complete and consistent way an effective explanation to complex structures, systems, and components, and prescribes solutions to practical challenges. It reflects the scientific novelty and promises a feasible, workable, theoretical and applicative attitude. Earthquakes and Sustainable Infrastructure serves a “commentary role” for developers and designers of critical infrastructure and unique installations. Commentary-like roles follow standard, where there is no standard. Mega-installations embody/potentiate risks; nonetheless, lack a comprehensive classic standard. Every compound is unique, one of its kind, and differs from others even of similar function. There is no justification to elaborate a common standard for unique entities. On the other hand, these specific installations, for example, NPPs, Naval Ports, Suez Canal, HazMat production sites, and nuclear waste deposits, impose security and safety challenges to people and the environment. The book offers a benchmark for entrepreneurs, designers, constructors, and operators on how to compile diverse relevant information on site-effects and integrate it into the best-educated guess to keep safe and secure, people and environment. The authors are eager to convey the entire information and explanations to our readers, without missing either accurate information or explanations. That is achieved by “miniaturization,” as much is possible, not minimization. So far, the neodeterministic method has been successfully applied in numerous metropolitan areas and regions such as Delhi (India), Beijing (China), Naples (Italy), Algiers (Algeria), Cairo (Egypt), Santiago de Cuba (Cuba), Thessaloniki (Greece), South-East Asia (2004), Tohoku, Japan (2011), Albania (2019), Bangladesh, Iran, Sumatra, Ecuador, and elsewhere. Earthquakes and Sustainable Infrastructure includes case studies from these areas, as well as suggested applications to other seismically active areas around the globe. NDSHA approaches confirm/validate that science is looming to warn. Concurrently, leaders and practitioners have to learn to use rectified science in favor of peoples' safety. State-of-the-art science does have the know-how to reduce casualties and structural damage from potential catastrophes to a bearable incident.
Transform Plate Boundaries and Fracture Zones bridges the gap between the classic plate tectonic theory and new emerging ideas, offering an assessment of the state-of-the-art, pending questions, and future directions in the study of transform plate boundaries and fracture zones. The book includes a number of case studies and reviews on both oceanic and continental tectonic settings. Transform Plate Boundaries and Fracture Zones is a timely reference for a variety of researchers, including geophysicists, seismologists, structural geologists and tectonicists, as well as specialists in exploration geophysics and natural hazards. This book can also be used as an up-to-date reference at universities in both undergraduate and postgraduate levels.
Complexity of Seismic Time Series: Measurement and Application applies the tools of nonlinear dynamics to seismic analysis, allowing for the revelation of new details in micro-seismicity, new perspectives in seismic noise, and new tools for prediction of seismic events. The book summarizes both advances and applications in the field, thus meeting the needs of both fundamental and practical seismology. Merging the needs of the classical field and the very modern terms of complexity science, this book covers theory and its application to advanced nonlinear time series tools to investigate Earth’s vibrations, making it a valuable tool for seismologists, hazard managers and engineers.
Structure and Tectonics of the Indian Continental Crust and Its Adjoining Region: Deep Seismic Studies, Second Edition, collates essential data from seismic studies of Earth’s crust across India, offering an essential understanding of the tectonic development of the Indian subcontinent. Seismic studies have been carried out in various parts of India since 1972, recording crust-related seismic data for determination of velocity-depth configuration and determination of structural patterns. The book examines the details of these studies, including their synthesis and global applications. The book presents both background and applications in one cohesive volume for researchers and students of geophysics and geology.
Coding and Decoding Seismic Data: The Concept of Multishooting, Volume One, Second Edition, offers a thorough investigation of modern techniques for collecting, simulating, and processing multishooting data. Currently, the acquisition of seismic surveys is performed as a sequential operation in which shots are computed separately, one after the other. The cost of performing various shots simultaneously is almost identical to that of one shot; thus, the benefits of using the multishooting approach for computing seismic surveys are enormous. By using this approach, the longstanding problem of simulating a three-dimensional seismic survey can be reduced to a matter of weeks. Providing both theoretical and practical explanations of the multishooting approach, including case histories, this book is an essential resource for exploration geophysicists and practicing seismologists.
Impacts and Insights of Gorkha Earthquake in Nepal offers a practical perspective on disaster risk management using lessons learned and considerations from the 2015 Gorkha earthquake in Nepal, which was the worst disaster to hit Nepal since the 1934 Nepal–Bihar earthquake. Using a holistic approach to examine seismicity, risk perception and intervention, the book serves as a detailed case study to improve disaster resilience globally, including social, technical, governmental and institutional risk perception, as well as scientific understanding of earthquake disasters. Covering the details of the Gorkha earthquake, including damage mapping and recovery tactics, the book offers valuable insights into ways forward for seismologists, earthquake researchers and engineers and policy-makers.
This volume contains an extensive presentation of the theory, phenomenology and interpretation of seismic waves produced by natural and artificial sources. Each theoretical topic discussed in the book is presented in a self-contained and mathematically rigorous form, yet without excessive demands on the reader's mathematical background. It is the only book to include such a complete presentation of the mathematical background and modern developments of the WKBJ theory of seismic waves, and detailed discussions of its wide ranging applications. The book will therefore be useful to postgraduate students and research workers specialising in seismic wave theory, theoretical seismology, electromagnetic wave theory and other fields of wave propagation theory.