Skip to main content

Books in Theory and mathematics

41-50 of 301 results in All results

Enveloping Algebras

  • 1st Edition
  • Volume 14
  • February 10, 2009
  • Diximier
  • English
  • eBook
    9 7 8 - 0 - 4 4 4 - 1 1 0 7 7 - 0

Abstract analytic number theory

  • 1st Edition
  • Volume 12
  • February 4, 2009
  • Knopfmacher
  • English
  • eBook
    9 7 8 - 0 - 4 4 4 - 1 0 7 7 9 - 4
North-Holland Mathematical Library, Volume 12: Abstract Analytic Number Theory focuses on the approaches, methodologies, and principles of the abstract analytic number theory. The publication first deals with arithmetical semigroups, arithmetical functions, and enumeration problems. Discussions focus on special functions and additive arithmetical semigroups, enumeration and zeta functions in special cases, infinite sums and products, double series and products, integral domains and arithmetical semigroups, and categories satisfying theorems of the Krull-Schmidt type. The text then ponders on semigroups satisfying Axiom A, asymptotic enumeration and "statistical" properties of arithmetical functions, and abstract prime number theorem. Topics include asymptotic properties of prime-divisor functions, maximum and minimum orders of magnitude of certain functions, asymptotic enumeration in certain categories, distribution functions of prime-independent functions, and approximate average values of special arithmetical functions. The manuscript takes a look at arithmetical formations, additive arithmetical semigroups, and Fourier analysis of arithmetical functions, including Fourier theory of almost even functions, additive abstract prime number theorem, asymptotic average values and densities, and average values of arithmetical functions over a class. The book is a vital reference for researchers interested in the abstract analytic number theory.

Multiparametric Statistics

  • 1st Edition
  • September 12, 2007
  • Vadim Ivanovich Serdobolskii
  • English
  • Hardback
    9 7 8 - 0 - 4 4 4 - 5 3 0 4 9 - 3
  • eBook
    9 7 8 - 0 - 0 8 - 0 5 5 5 9 2 - 8
This monograph presents mathematical theory of statistical models described by the essentially large number of unknown parameters, comparable with sample size but can also be much larger. In this meaning, the proposed theory can be called "essentially multiparametric". It is developed on the basis of the Kolmogorov asymptotic approach in which sample size increases along with the number of unknown parameters.This theory opens a way for solution of central problems of multivariate statistics, which up until now have not been solved. Traditional statistical methods based on the idea of an infinite sampling often break down in the solution of real problems, and, dependent on data, can be inefficient, unstable and even not applicable. In this situation, practical statisticians are forced to use various heuristic methods in the hope the will find a satisfactory solution.Mathematical theory developed in this book presents a regular technique for implementing new, more efficient versions of statistical procedures. Near exact solutions are constructed for a number of concrete multi-dimensional problems: estimation of expectation vectors, regression and discriminant analysis, and for the solution to large systems of empiric linear algebraic equations. It is remarkable that these solutions prove to be not only non-degenerating and always stable, but also near exact within a wide class of populations.In the conventional situation of small dimension and large sample size these new solutions far surpass the classical, commonly used consistent ones. It can be expected in the near future, for the most part, traditional multivariate statistical software will be replaced by the always reliable and more efficient versions of statistical procedures implemented by the technology described in this book.This monograph will be of interest to a variety of specialists working with the theory of statistical methods and its applications. Mathematicians would find new classes of urgent problems to be solved in their own regions. Specialists in applied statistics creating statistical packages will be interested in more efficient methods proposed in the book. Advantages of these methods are obvious: the user is liberated from the permanent uncertainty of possible instability and inefficiency and gets algorithms with unimprovable accuracy and guaranteed for a wide class of distributions.A large community of specialists applying statistical methods to real data will find a number of always stable highly accurate versions of algorithms that will help them to better solve their scientific or economic problems. Students and postgraduates will be interested in this book as it will help them get at the foremost frontier of modern statistical science.

Computational Theory of Iterative Methods

  • 1st Edition
  • Volume 15
  • September 4, 2007
  • Ioannis Argyros
  • English
  • eBook
    9 7 8 - 0 - 0 8 - 0 5 6 0 7 0 - 0
The book is designed for researchers, students and practitioners interested in using fast and efficient iterative methods to approximate solutions of nonlinear equations. The following four major problems are addressed. Problem 1: Show that the iterates are well defined. Problem 2: concerns the convergence of the sequences generated by a process and the question of whether the limit points are, in fact solutions of the equation. Problem 3: concerns the economy of the entire operations. Problem 4: concerns with how to best choose a method, algorithm or software program to solve a specific type of problem and its description of when a given algorithm succeeds or fails. The book contains applications in several areas of applied sciences including mathematical programming and mathematical economics. There is also a huge number of exercises complementing the theory.

Handbook of Quantum Logic and Quantum Structures

  • 1st Edition
  • August 1, 2007
  • Kurt Engesser + 2 more
  • English
  • eBook
    9 7 8 - 0 - 0 8 - 0 5 5 0 3 8 - 1
Since its inception in the famous 1936 paper by Birkhoff and von Neumann entitled “The logic of quantum mechanics” quantum logic, i.e. the logical investigation of quantum mechanics, has undergone an enormous development. Various schools of thought and approaches have emerged and there are a variety of technical results.Quantum logic is a heterogeneous field of research ranging from investigations which may be termed logical in the traditional sense to studies focusing on structures which are on the border between algebra and logic. For the latter structures the term quantum structures is appropriate. The chapters of this Handbook, which are authored by the most eminent scholars in the field, constitute a comprehensive presentation of the main schools, approaches and results in the field of quantum logic and quantum structures. Much of the material presented is of recent origin representing the frontier of the subject. The present volume focuses on quantum structures. Among the structures studied extensively in this volume are, just to name a few, Hilbert lattices, D-posets, effect algebras MV algebras, partially ordered Abelian groups and those structures underlying quantum probability.

Network Routing

  • 1st Edition
  • March 29, 2007
  • English
  • Hardback
    9 7 8 - 0 - 1 2 - 0 8 8 5 8 8 - 6
  • eBook
    9 7 8 - 0 - 0 8 - 0 4 7 4 9 7 - 7
Network routing can be broadly categorized into Internet routing, PSTN routing, and telecommunication transport network routing. This book systematically considers these routing paradigms, as well as their interoperability. The authors discuss how algorithms, protocols, analysis, and operational deployment impact these approaches. A unique feature of the book is consideration of both macro-state and micro-state in routing; that is, how routing is accomplished at the level of networks and how routers or switches are designed to enable efficient routing.In reading this book, one will learn about 1) the evolution of network routing, 2) the role of IP and E.164 addressing in routing, 3) the impact on router and switching architectures and their design, 4) deployment of network routing protocols, 5) the role of traffic engineering in routing, and 6) lessons learned from implementation and operational experience. This book explores the strengths and weaknesses that should be considered during deployment of future routing schemes as well as actual implementation of these schemes. It allows the reader to understand how different routing strategies work and are employed and the connection between them. This is accomplished in part by the authors' use of numerous real-world examples to bring the material alive.

Information Theory of Molecular Systems

  • 1st Edition
  • February 22, 2006
  • Roman F Nalewajski
  • English
  • Hardback
    9 7 8 - 0 - 4 4 4 - 5 1 9 6 6 - 5
  • eBook
    9 7 8 - 0 - 0 8 - 0 4 5 9 7 4 - 5
As well as providing a unified outlook on physics, Information Theory (IT) has numerous applications in chemistry and biology owing to its ability to provide a measure of the entropy/information contained within probability distributions and criteria of their information "distance" (similarity) and independence. Information Theory of Molecular Systems applies standard IT to classical problems in the theory of electronic structure and chemical reactivity. The book starts by introducing the basic concepts of modern electronic structure/reactivity theory based upon the Density Functional Theory (DFT), followed by an outline of the main ideas and techniques of IT, including several illustrative applications to molecular systems. Coverage includes information origins of the chemical bond, unbiased definition of molecular fragments, adequate entropic measures of their internal (intra-fragment) and external (inter-fragment) bond-orders and valence-numbers, descriptors of their chemical reactivity, and information criteria of their similarity and independence. Information Theory of Molecular Systems is recommended to graduate students and researchers interested in fresh ideas in the theory of electronic structure and chemical reactivity.

Computational Error and Complexity in Science and Engineering

  • 1st Edition
  • Volume 201
  • March 4, 2005
  • Vangipuram Lakshmikantham + 1 more
  • English
  • eBook
    9 7 8 - 0 - 0 8 - 0 4 5 9 5 1 - 6
The book “Computational Error and Complexity in Science and Engineering” pervades all the science and engineering disciplines where computation occurs. Scientific and engineering computation happens to be the interface between the mathematical model/problem and the real world application. One needs to obtain good quality numerical values for any real-world implementation. Just mathematical quantities symbols are of no use to engineers/technologists. Computational complexity of the numerical method to solve the mathematical model, also computed along with the solution, on the other hand, will tell us how much computation/computational effort has been spent to achieve that quality of result. Anyone who wants the specified physical problem to be solved has every right to know the quality of the solution as well as the resources spent for the solution. The computed error as well as the complexity provide the scientific convincing answer to these questions. Specifically some of the disciplines in which the book will be readily useful are (i) Computational Mathematics, (ii) Applied Mathematics/Computational Engineering, Numerical and Computational Physics, Simulation and Modelling. Operations Research (both deterministic and stochastic), Computing Methodologies, Computer Applications, and Numerical Methods in Engineering.Key Features:- Describes precisely ready-to-use computational error and complexity- Includes simple easy-to-grasp examples wherever necessary.- Presents error and complexity in error-free, parallel, and probabilistic methods.- Discusses deterministic and probabilistic methods with error and complexity. - Points out the scope and limitation of mathematical error-bounds.- Provides a comprehensive up-to-date bibliography after each chapter.