Applied Raman Spectroscopy: Concepts, Instrumentation, Chemometrics, and Life Science Applications synthesizes recent developments in the field, providing an updated overview. The book focuses on the modern concepts of Raman spectroscopy techniques, recent technological innovations, data analysis using chemometric methods, along with the latest examples of life science applications relevant in academia and industries. It will be beneficial to researchers from various branches of science and technology, and it will point them to modern techniques coupled with data analysis methods. In addition, it will help instruct new readers on Raman spectroscopy and hyphenated Raman spectroscopic techniques.The book is primarily written for analytical and physical chemistry students and researchers at a more advanced level who require a broad introductory overview of the applications of Raman spectroscopy, as well as those working in applied industry and clinical laboratories. Students, researchers, and industry workers in related fields, including X-ray and materials science, agriculture, botany, molecular biology and biotechnology, mineralogy, and environmental science will also find it very useful.
The Chemistry of Hyperpolarized Magnetic Resonance Probes, Volume Seven focuses on the chemical aspects of hyperpolarized NMR/MRI technology, with synthesis and characterizations of labeled compounds discussed from a practical point-of-view. A brief overview of the various hyperpolarization techniques are given, with the optimization of hyperpolarization conditions and the determination of critical parameters such as polarization level and T1 relaxation values described. A practical guide on the in vivo applications of hyperpolarized compounds in small animals is also included.
Wave Optics in Infrared Spectroscopy starts where conventional books about infrared spectroscopy end. Whereas the latter are based on the Bouguer-Beer-Lambert law, the cornerstones of this book are wave optics and dispersion theory.This gap between both levels of theory is bridged to allow a seamless transition from one to the other. Based on these foundations, the reader is able to choose which level of theory is adequate for the particular problem at hand. Advanced topics like 2D correlation analysis, chemometrics and strong coupling are introduced and viewed from a wave optics perspective. Spectral mixing rules are also considered to better understand spectra of heterogeneous samples. Finally, optical anisotropy is examined to allow a better understanding of spectral features due to orientation and orientational averaging. This discussion is based on a 4 x 4 matrix formalism, which is used not only to simulate and analyze complex materials, but also to understand vibrational circular dichroism from a (semi-) classical point of view.Wave Optics in Infrared Spectroscopy is written as a tool to reunite the fragmented field of infrared spectroscopy. It will appeal to chemists, physicists, and chemical/optical engineers.
Spectroscopic Measurement: An Introduction to the Fundamentals, Second Edition contains the foundational topics associated with optical spectroscopic techniques, covering the basic theory of applied spectroscopy and presenting alternative approaches to understand physical processes. Electromagnetism, quantum mechanics, statistical mechanics, molecular spectroscopy, optics, and radiation form the foundations of the field are all thoroughly covered. On top of these rest the techniques applying the fundamentals, including Emission Spectroscopy, Laser Induced Fluorescence, and Raman Spectroscopy. This comprehensive and fully updated second edition includes additional coaching and covers new material online broadening, nonlinear techniques such as coherent anti-Stokes Raman spectroscopy, and more.Researchers not formally trained in these topics, but who apply spectroscopy in their work, will appreciate the detail contained in this book to ensure accuracy of their technique and/or to develop more sophisticated measurements.
Encyclopedia of Solid-Liquid Interfaces is designed to provide a comprehensive overview of macroscopic phenomena at solid-liquid interfaces, e.g. in physics, chemistry, geology, biology and technology, and to describe the methodological approaches and strategies to gain microscopic insight into the underlying properties and processes on the atomic/molecular level.Covering an area of chemistry that plays a fundamental role in nature and technology, the book compiles all relevant features of the field into a ‘one-stop’ reference source that will be relevant to a wide range of interdisciplinary scientists, researchers and academics. Encompassing 155 chapters by renowned experts, and led by leading names in the field, the contents will be organized over 3volumes.
UV-Visible Spectrophotometry of Waters and Soils, Third Edition presents the latest information on the use of UV spectrophotometry for environmental quality monitoring. Using practical examples, the book illustrates how this technique can be a source of new methods of characterization and measurement. Easy and fast to run, this simple and robust analytical technique is one of the best ways to obtain a quantitative estimation of specific or aggregate parameters (e.g., Nitrate, TOC) and simultaneously qualitative information on the global composition of waters and soils. This third edition presents current methods and applications for water quality monitoring, including recent works and developments. Writing from years of experience in the development and applications of UV systems and from scientific and technical works, the book's authors provide several useful examples that show the great interest of UV spectrophotometry for water and soil monitoring. At the end of the book, the UV spectra library of previous editions is updated with new chemicals of interest.
Annual Reports on NMR Spectroscopy, Volume 105, the latest release in a series that has established itself as a premier resource for both specialists and non-specialists interested in new techniques and applications pertaining to NMR spectroscopy includes a variety of updated chapters covering Recent advances in dynamic nuclear polarization-enhanced NMR spectroscopy for organic polymers and Functional and structural characterization of membrane-binding proteins using NMR.
Handbook of Modern Coating Technologies: Advanced Characterization Methods reviews advanced characterization methods of modern coating technologies. The topics in this volume consist of scanning vibrating electrode technique, spectroscopic ellipsometry, advances in X-ray diffraction, neutron reflectivity, micro- and nanoprobes, fluorescence technique, stress measurement methods in thin films, micropotentiometry, and localized corrosion studies.
Gas phase molecular spectroscopy is a powerful tool for obtaining information on the geometry and internal structure of isolated molecules and their interactions with others. It enables the understanding and description, through measurements and modeling, of the influence of pressure on light absorption, emission, and scattering by gas molecules, which must be taken into account for the correct analysis and prediction of the resulting spectra. Collisional Effects on Molecular Spectra: Laboratory Experiments and Models, Consequences for Applications, Second Edition provides an updated review of current experimental techniques, theoretical knowledge, and practical applications. After an introduction to collisional effects on molecular spectra, the book moves on by taking a threefold approach: it highlights key models, reviews available data, and discusses the consequences for applications. These include areas such as heat transfer, remote sensing, optical sounding, metrology, probing of gas media, and climate predictions. This second edition also contains, with respect to the first one, significant amounts of new information, including 23 figures, 8 tables, and around 700 references.Drawing on the extensive experience of its expert authors, Collisional Effects on Molecular Spectra: Laboratory Experiments and Models, Consequences for Applications, Second Edition, is a valuable guide for all those involved with sourcing, researching, interpreting, or applying gas phase molecular spectroscopy techniques across a range of fields.
Molecular Spectroscopy and Quantum Dynamics, an exciting new work edited by Professors Martin Quack and Roberto Marquardt, contains comprehensive information on the current state-of-the-art experimental and theoretical methods and techniques used to unravel ultra-fast phenomena in atoms, molecules and condensed matter, along with future perspectives on the field.