Comprehensive Sampling and Sample Preparation is a complete treatment of the theory and methodology of sampling in all physical phases and the theory of sample preparation for all major extraction techniques. It is the perfect starting point for researchers and students to design and implement their experiments and support those experiments with quality-reviewed background information. Now in its second edition, this resource provides the latest knowledge and technologies in the field.In its four volumes, fundamentals of sampling and sample preparation are reinforced through broad and detailed sections dealing with Biological and Medical, Environmental and Forensic, and Food and Beverage applications. Emerging areas in the field are discussed in-depth and contributions are organized to reflect the way in which analytical chemists approach a problem. The latest edition includes updated chapters along with new chapters on exciting topics including micro- and nano extractions, green solvents, nanomaterials and nanocomposites in extraction studies, and solid-phase extractions.This work will appeal to a broad audience of analytical chemists. It will also assist educators and practitioners in the preparation of courses and to spark students’ interest in sampling and sample preparation.
Essentials in Modern HPLC Separations, Second Edition discusses the role of separation in high performance liquid chromatography (HPLC). This new and updated edition systematically presents basic concepts as well as new developments in HPLC. Starting with a description of basic concepts, it provides important guidance for the practical utilization of various HPLC procedures, such as the selection of the HPLC type, proper choice of the chromatographic column, selection of mobile phase and selection of the method of detection, all of which are in correlation with the physico-chemical characteristics of the compounds separated. Every chapter has been carefully reviewed, with several new sections added to bring the book completely up-to-date. Hence, it is a valuable reference for students and professors in chemistry.
Principles and Practice of Modern Chromatographic Methods, Second Edition takes a comprehensive, unified approach in its presentation of chromatographic techniques. Like the first edition, the book provides a scientifically rigid, but easy-to-follow presentation of chromatography concepts that begins with the purpose and intent of chromatographic theory - the “what and why” that are left out of other books attempting to cover these principles. This fully revised second edition brings the content up-to-date, covering recent developments in several new sections and an additional chapter on composite methods. New topics include sample profiling, sample preparation, sustainable green chemistry, 2D chromatography, miniaturization/nano-LC, HILIC, and more.
Carbohydrate Analysis by Modern Liquid Phase Separation Techniques, Second Edition, presents readers with the various principles of modern liquid phase separation techniques and their contributions to the analysis of complex carbohydrates and glycoconjugates. In a selection of all-new chapters, this fully updated volume covers each technique in detail. The book aims to help analysts solve any of the many practical problems they may face in tackling the analysis of carbohydrates. In addition, it addresses current difficulties that must be resolved in carbohydrate research, thus inspiring further important technological developments to meet these challenges. This is an essential resource for anyone seeking a broad view of the science of carbohydrates and separation techniques.
Gas Chromatography, Second Edition, offers a single source of authoritative information on all aspects relating to the practice of gas chromatography. A focus on short, topic-focused chapters facilitates the identification of information that will be of immediate interest for familiar or emerging uses of gas chromatography. The book gives those working in both academia and industry the opportunity to learn, refresh and deepen their understanding of fundamental and instrumental aspects of gas chromatography and tools for the interpretation and management of chromatographic data. Users will find a consolidated guide to the selection of separation conditions and the use of auxiliary techniques. This new edition restores the contemporary character of the book with respect to those involved in advancing the technology, analyzing the data produced, or applying the technique to new application areas. New topics covered include hyphenated spectroscopic detectors, micromachined instrument platforms, derivatization and related microchemical techniques, petrochemical applications, volatile compounds in the atmosphere, and more.
Modern Sample Preparation for Chromatography, Second Edition explains the principles of sample preparation for chromatographic analysis. A variety of procedures are applied to make real-world samples amenable for chromatographic analysis and to improve results. This book's authors discuss each procedure’s advantages, disadvantages and their applicability to different types of samples, along with their fit for different types of chromatographic analysis. The book contains numerous literature references and examples of sample preparation for different matrices and new sections on green approaches in sample preparation, progress in automation of sample preparation, non-conventional solvents for LLE (ionic liquids, deep eutectic mixtures, and others), and more.
Separation Methods in Drug Synthesis and Purification, Second Edition, Volume Eight, provides an updated on the analytical techniques used in drug synthesis and purification. Unlike other books on either separation science or drug synthesis, this volume combines the two to explain the basic principles and comparisons of each separation technique. New sections to this volume include enantiomer separation using capillary electrophoresis (CE) and capillary electro- chromatography, the computer simulation of chromatographic separation for accelerating method development, the application of chromatography and capillary electrophoresis used as surrogates for biological processes, and new developments in the established techniques of chromatography and preparative methods.
Basic Multidimensional Gas Chromatography is aimed at the next generation of multidimensional gas chromatography users who will require basic training in the fundamentals of both GC and GCxGC. This book fills the current need for an inexpensive, straightforward guidebook to get new users started. It will help new users determine when to add or purchase a multidimensional system and teach them to optimize and maximize the capability of each system. Readers will also learn to select specific modes for each portion of a multidimensional analysis. This ideal resource is a concise, hard-hitting text that provides the facts needed to get users up and running.
Evaluating Water Quality to Prevent Future Disasters, volume 11 in the Separation Science and Technology series, covers various separation methods that can be used to avoid water catastrophes arising from climate change, arsenic, lead, algal bloom, fracking, microplastics, flooding, glyphosphates, triazines, GenX, and oil contamination. This book provides a valuable resource that will help the reader solve their potential water contamination problems and help them develop their own new approaches to monitor water contamination.
Membrane Separation Principles and Applications: From Material Selection to Mechanisms and Industrial Uses, the latest volume in the Handbooks in Separation Science series, is the first single resource to explore all aspects of this rapidly growing area of study. Membrane technology is now accepted as one of the most effective tools for separation and purification, primarily due to its simple operation. The result has been a proliferation of studies on this topic; however, the relationships between fundamental knowledge and applications are rarely discussed. This book acts as a guideline for those who are interested in exploring membranes at a more progressive level. Covering methods of pressure driving force, partial pressure driving force, concentration driving force, electrical potential driving force, hybrid processes, and more, this volume is more complete than any other known resource on membrane separations.