Skip to main content

Morgan Kaufmann

  • Machine Learning Proceedings 1989

    • 1st Edition
    • Alberto Maria Segre
    • English
    Proceedings of the Sixth International Workshop on Machine Learning covers the papers presented at the Sixth International Workshop of Machine Learning, held at Cornell University, Ithaca, New York (USA) on June 26-27, 1989. The book focuses on the processes, methodologies, techniques, and approaches involved in machine learning. The selection first offers information on unifying themes in empirical and explanation-based learning; integrated learning of concepts with both explainable and conventional aspects; conceptual clustering of explanations; and tight integration of deductive and inductive learning. The text then examines multi-strategy learning in nonhomogeneous domain theories; description of preference criterion in constructive learning; and combining case-based reasoning, explanation-based learning, and learning from instruction. Discussions focus on causal explanation of actions, constructive learning, learning in a weak theory domain, learning problem, and individual criteria and their relationships. The book elaborates on learning from plausible explanations, augmenting domain theory for explanation-based generalization, reducing search and learning goal preferences, and using domain knowledge to improve inductive learning algorithms for diagnosis. The selection is a dependable reference for researchers interested in the dynamics of machine learning.
  • Machine Learning Proceedings 1994

    Proceedings of the Eighth International Conference
    • 1st Edition
    • William W. Cohen
    • English
    Machine Learning: Proceedings of the Eleventh International Conference covers the papers presented at the Eleventh International Conference on Machine Learning (ML94), held at New Brunswick, New Jersey on July 10-13, 1994. The book focuses on the processes, methodologies, and approaches involved in machine learning, including inductive logic programming, neural networks, and decision trees. The selection first offers information on learning recursive relations with randomly selected small training sets; improving accuracy of incorrect domain theories; and using sampling and queries to extract rules from trained neural networks. The text then takes a look at boosting and other machine learning algorithms; an incremental learning approach for completable planning; and learning disjunctive concepts by means of genetic algorithms. The publication ponders on rule induction for semantic query optimization; irrelevant features and the subset selection problem; and an efficient subsumption algorithm for inductive logic programming. The book also examines Bayesian inductive logic programming; a statistical approach to decision tree modeling; and an improved algorithm for incremental induction of decision trees. The selection is a dependable source of data for researchers interested in machine learning.
  • Uncertainty in Artificial Intelligence

    Proceedings of the Seventh Conference on Uncertainty in Artificial Intelligence, UCLA, at Los Angeles, July 13-15, 1991
    • 1st Edition
    • Bruce D'Ambrosio + 2 more
    • English
    Uncertainty in Artificial Intelligence: Proceedings of the Seventh Conference (1991) covers the papers presented at the Seventh Conference on Uncertainty in Artificial Intelligence, held on July 13-15, 1991 at the University of California at Los Angeles (UCLA). The book focuses on the processes, technologies, developments, and approaches involved in artificial intelligence. The selection first offers information on combining multiple-valued logics in modular expert systems; constraint propagation with imprecise conditional probabilities; and Bayesian networks applied to therapy monitoring. The text then examines some properties of plausible reasoning; theory refinement on Bayesian networks; combination of upper and lower probabilities; and a probabilistic analysis of marker-passing techniques for plan-recognition. The publication ponders on symbolic probabilistic inference (SPI) with continuous variables, SPI with evidence potential, and local expression languages for probabilistic dependence. Topics include local expression languages for probabilistic knowledge, evidence potential algorithm, symbolic inference with evidence potential, and SPI with continuous variables algorithm. The manuscript also takes a look at the compatibility of quantitative and qualitative representations of belief and a method for integrating utility analysis into an expert system for design evaluation under uncertainty. The selection is a valuable source of data for researchers interested in artificial intelligence.
  • Readings in Artificial Intelligence and Software Engineering

    • 1st Edition
    • Charles Rich + 1 more
    • English
    Readings in Artificial Intelligence and Software Engineering covers the main techniques and application of artificial intelligence and software engineering. The ultimate goal of artificial intelligence applied to software engineering is automatic programming. Automatic programming would allow a user to simply say what is wanted and have a program produced completely automatically. This book is organized into 11 parts encompassing 34 chapters that specifically tackle the topics of deductive synthesis, program transformations, program verification, and programming tutors. The opening parts provide an introduction to the key ideas to the deductive approach, namely the correspondence between theorems and specifications and between constructive proofs and programs. These parts also describes automatic theorem provers whose development has be designed for the programming domain. The subsequent parts present generalized program transformation systems, the problems involved in using natural language input, the features of very high level languages, and the advantages of the programming by example system. Other parts explore the intelligent assistant approach and the significance and relation of programming knowledge in other programming system. The concluding parts focus on the features of the domain knowledge system and the artificial intelligence programming. Software engineers and designers and computer programmers, as well as researchers in the field of artificial intelligence will find this book invaluable.
  • Machine Learning Proceedings 1992

    Proceedings of the Ninth International Workshop (ML92)
    • 1st Edition
    • Peter Edwards + 1 more
    • English
    Machine Learning: Proceedings of the Ninth International Workshop (ML92) covers the papers and posters presented at ML92, the Ninth International Machine Learning Conference, held at Aberdeen, Scotland on July 1-3, 1992. The book focuses on the advancements of practices, methodologies, approaches, and techniques in machine learning. The selection first offers information on the principal axes method for constructive induction; learning by incomplete explanations of failures in recursive domains; and eliminating redundancy in explanation-based learning. Topics include means-ends analysis search in recursive domains, description space transformation, distance metric, generating similarity matrix, and learning principal axes. The text then examines trading off consistency and efficiency in version-space induction; improving path planning with learning; finding the conservation of momentum; and learning to predict in uncertain continuous tasks. The manuscript elaborates on a teaching method for reinforcement learning, compiling prior knowledge into an explicit bias, spatial analogy and subsumption, and multistrategy learning with introspective meta-explanations. The publication also ponders on selecting typical instances in instance-based learning and temporal difference learning of backgammon strategy. The selection is a valuable source of information for researchers interested in machine learning.
  • Parallel Processing from Applications to Systems

    • 1st Edition
    • Dan I. Moldovan
    • English
    This text provides one of the broadest presentations of parallelprocessing available, including the structure of parallelprocessors and parallel algorithms. The emphasis is on mappingalgorithms to highly parallel computers, with extensive coverage ofarray and multiprocessor architectures. Early chapters provideinsightful coverage on the analysis of parallel algorithms andprogram transformations, effectively integrating a variety ofmaterial previously scattered throughout the literature. Theory andpractice are well balanced across diverse topics in this concisepresentation. For exceptional clarity and comprehension, the authorpresents complex material in geometric graphs as well as algebraicnotation. Each chapter includes well-chosen examples, tablessummarizing related key concepts and definitions, and a broad rangeof worked exercises.
  • Uncertainty in Artificial Intelligence

    Proceedings of the Tenth Conference on Uncertainty in Artificial Intelligence, University of Washington, Seattle, July 29-31, 1994
    • 1st Edition
    • MKP
    • English
    Uncertainty in Artificial Intelligence: Proceedings of the Tenth Conference (1994) covers the papers accepted for presentation at the Tenth Annual Conference on Uncertainty in Artificial Intelligence, held in Seattle, Washington on July 29-31, 1994. The book focuses on the processes, methodologies, and approaches involved in artificial intelligence, including approximations, computational methods, Bayesian networks, and probabilistic inference. The selection first offers information on ending-based strategies for part-of-speech tagging; an evaluation of an algorithm for inductive learning of Bayesian belief networks using simulated data sets; and probabilistic constraint satisfaction with non-Gaussian noise. The text then examines Laplace's method approximations for probabilistic inference in belief networks with continuous variables; computational methods, bounds, and applications of counterfactual probabilities; and approximation algorithms for the loop cutset problem. The book takes a look at learning in multi-level stochastic games with delayed information; properties of Bayesian belief network learning algorithms; and the relation between kappa calculus and probabilistic reasoning. The manuscript also elaborates on intercausal independence and heterogeneous factorization; evidential reasoning with conditional belief functions; and state-space abstraction for anytime evaluation of probabilistic networks. The selection is a valuable reference for researches interested in artificial intelligence.
  • Scalable Shared-Memory Multiprocessing

    • 1st Edition
    • Daniel E. Lenoski + 1 more
    • English
    Dr. Lenoski and Dr. Weber have experience with leading-edge research and practical issues involved in implementing large-scale parallel systems. They were key contributors to the architecture and design of the DASH multiprocessor. Currently, they are involved with commercializing scalable shared-memory technology.
  • Machine Learning Proceedings 1991

    Proceedings of the Eighth International Workshop (ML91)
    • 1st Edition
    • Lawrence A. Birnbaum + 1 more
    • English
    Machine Learning: Proceedings of the Eighth International Workshop (ML91) covers the papers presented at ML91, the Eighth International Workshop on Machine Learning, held at Northwestern University, Evanston, Illinois, USA, in June 1991. The book focuses on constructive induction, learning from theory and data, automated knowledge acquisition, learning in intelligent information retrieval, machine learning in engineering automation, computational models of human learning, and learning reaction strategies. The selection first offers information on design rationale capture as knowledge acquisition, a domain-independent framework for effective experimentation in planning, and knowledge refinement using a high-level, non-technical vocabulary. The text then elaborates on improving the performance of inconsistent knowledge bases via combined optimization method, flexibility of speculative refinement, and a prototype based symbolic concept learning system. Topics include using task descriptions to generate error candidates, functional descriptions of knowledge-based systems, combined optimization method, and inconsistency and related work. The book ponders on learning words from context, modeling the acquisition and improvement of motor skills, a computational model of acquisition for children's addition strategies, and computer modeling of acquisition orders in child language. The manuscript also takes a look at knowledge acquisition combining analytical and empirical techniques; designing integrated learning systems for engineering design; and machine learning for nondestructive evaluation. The selection is highly recommended for researchers interested in machine learning.
  • Introduction to Knowledge Systems

    • 1st Edition
    • Mark Stefik
    • English
    Focusing on fundamental scientific and engineering issues, this book communicates the principles of building and using knowledge systems from the conceptual standpoint as well as the practical. Previous treatments of knowledge systems have focused on applications within a particular field, or on symbol-level representations, such as the use of frame and rule representations. Introduction to Knowledge Systems presents fundamentals of symbol-level representations including representations for time, space, uncertainty, and vagueness. It also compares the knowledge-level organizations for three common knowledge-intensive tasks: classification, configuration, and diagnosis. The art of building knowledge systems incorporates computer science theory, programming practice, and psychology. The scope of this book is appropriately broad, ranging from the design of hierarchical search algorithms to techniques for acquiring the task-specific knowledge needed for successful applications. Each chapter proceeds from concepts to applications, and closes with a brief tour of current research topics and open issues. Readers will come away with a solid foundation that will enable them to create real-world knowledge systems using whatever tools and programming languages are most current and appropriate.