Comprehensive Inorganic Chemistry III, a ten-volume reference work, is intended to cover fundamental principles, recent discoveries, and significant applications of elements and their compounds. Authored by renowned experts in the field and edited by a world-class editorial board, each chapter provides a thorough and in-depth overview of the topic covered, featuring resources which will be useful to students, researchers, faculty as well as those in the industry. Comprehensive Inorganic Chemistry III focuses on main group chemistry, biological inorganic chemistry, solid state and materials chemistry, catalysis, and new developments in electrochemistry and photochemistry, as well as NMR and diffraction methods for studying inorganic compounds. The work expands on our 2013 work Comprehensive Inorganic Chemistry II while also adding new volumes on cutting-edge research areas and techniques for studying inorganic compounds. Researchers seeking background information on a specific problem involving the synthesis of inorganic compounds, as well as applications for numerous elements from the periodic table, and their compounds, will be able to rely on and refer to this authoritative scientific resource time and again. This new work complements Comprehensive Coordination Chemistry III (2021) and Comprehensive Organometallic Chemistry IV (2022), constituting a formidable trio of reference resources covering the whole of modern inorganic chemistry.
Origins and Principles of Clinical Biomechanics in Human Locomotion discusses key concepts of how biomechanics links to the development of pathology through mechanical laws, anatomy, physiology and health. It provides fundamental principles and practical data, and guidance of how to apply these in the clinical biomechanics field. Coverage includes: major joint movement, muscle action around joints, physiology and patho-physiology of bone, muscle and neurologic disorders. This reference is ideal for teaching students in biomechanics, orthopedics and physiotherapy. It should also be of interest to product development engineers, rehabilitation engineers, those working in prosthetics and orthotics, physiotherapists and occupational therapists. The authors explore the simple laws of motion as applied to anatomy and physiology, in order to help readers understand human pathology within the human lower limb and mobility. They then go on to look at materials science concerns within this field, such as engineering stresses and strains, principles and types of material properties and the shaping of structural properties. Readers will also find within this book information on tissue science, force generation, biological sciences, evolution in biomechanics, human gait, functional units of the lower limb and foot, and finally pathomechanical principles; all as applied to clinical biomechanics.
Nanotechnology for Advanced Biofuels: Fundamentals and Applications highlights emerging techniques for the formulation of fuels using nanotechnology and bio-based concepts. The addition of high-energy nanoparticles and biologically derived molecules in liquid fuel can increase the potential of energy-rich compounds. Key challenges in the production of nanotechnology-based fuels and their combustion or ignition during the operation are covered, along with the emission of oxidized particles and by-products of incomplete combustion and nano-fuels as an emerging field. The bio-based energy-rich fuels are largely diffused in conventionally used fuels. The addition of biofuels and nano-additives to pre-existing fuels can offer opportunities for developing modified fuels in domestic industries with the maximum usage of renewable biomass. This is an important reference source for materials scientists, energy scientists and chemical engineers who want to understand more about how nanotechnology can help create more efficient biofuels.
Biological Fuel Cells: Fundamental to Applications offers a comprehensive update on the latest microbial fuel cells technologies and their systems development and implementation. Taking a practical approach to MFCs, the book provides guidance on analytical methods and tools, economic and performance analyses of various technologies and systems, and engineering aspects. Established and newly developed technologies are presented alongside their applications within the context of cost, practicality and future technologies, which are discussed within the context of other renewable energy systems. This book is a comprehensive reference for users working in the field of fuel cells, microbial fuel cells and bioenergy.
Advanced Nanomaterials and Nanocomposites for Bioelectrochemical Systems covers advancements in nanomaterial and nanocomposite applications for microbial fuel cells. One of the advantages of using microbial fuel cells is the simultaneous treatment of wastewater and the generation of electricity from complex organic waste and biomass, which demonstrates that microbial fuel cells are an active area of frontier research. The addition of microorganisms is essential to enhance the reaction kinetics. This type of fuel cell helps to convert complex organic waste into useful energy through the metabolic activity of microorganisms, thereby generating energy. By incorporating nano-scale fillers into the nanocomposite matrix, the performance of the anode material can be improved. This is an important reference source for materials scientists and engineers who want to learn more about how nanotechnology is being used to create more efficient fuel cells.
Nanomedicine: Technologies and Applications, Second Edition provides an important review of this exciting technology and its growing range of applications. In this new edition, all chapters are thoroughly updated and revised, with new content on antibacterial technologies and green nanomedicine. Sections introduce the material, cover their properties, review nanomedicine for therapeutics, imaging and soft tissue engineering, including organ regeneration, skin grafts, nanotubes and self-assembled nanomaterials. Other sections cover bone and cartilage tissue engineering, nanostructured particles for antibacterial purposes, advances in green nanomedicine, and using natural nanomedicine to fight disease. This book is an indispensable guide for all those involved in the research, development and application of this exciting technology, whilst also providing a comprehensive introduction for students and academics interested in this field.
Polyoxometalate-Based Hybrids and their Applications focuses on recent progress in polyoxometalate-based hybrids materials. Chapters present the structure, composition, classification and properties of POMs such as isopolyaions, heteropolyanions, giant and lacunary polyoxometalates and then cover polyoxometalate-based open-frameworks (POM-OFs), include a historical introduction to these compounds, and present their synthetic strategies. The structural diversity and relative applications of POM-OFs is also covered. Other sections delve into synthetic strategies, structural diversity and relative applications of porous polyoxometalate-based metal-organic frameworks. Polyoxometalate-based coordination polymers (POMCPs) and polyoxometalate-based host-guest framework materials are highlighted in final sections. This book is an essential reference for inorganic chemists, biochemists, and material scientists working in academia and industry.
Multifunctional Phase Change Materials: Fundamentals, Properties and Applications updates on phase change materials (PCMs) used for the storage of thermal energy as sensible and latent heat. This class of materials is the subject of intensive research, both fundamental and applied, as they substantially contribute to the efficient use and conservation of waste heat and solar energy. Different groups of materials have been investigated as PCMs, including inorganic systems (salt and salt hydrates), organic, e.g., paraffins or fatty acids, polymers, and finally, hybrid materials. Recent developments are focused on multifunctional PCMs that provide functional features apart from energy storage, such as desired optical or antibacterial properties. This book presents various synthesis approaches for functionalized materials, as well as specific interactions and self-organization effects in polymer/functionalized (nano)particle systems. It reviews the current state-of-the-art in multifunctional phase change materials for thermal energy storage applications by describing the fundamentals of energy storage, the main classes of PCMs, functionalization protocols, encapsulation methods and shape stabilization procedures.
Contaminants of emerging concern in the marine environment: current challenges in marine pollution reviews the available data in relation to contaminants of emerging concern (CECs) in the marine environment: main sources, transport pathways, distribution in seawater and sediments, bioaccumulation, and biological effects. Each chapter recaps the most relevant information about the main groups of CECs, describing the particularities and specificities of each group and focusing on the most relevant individual contaminants. CECs are not regulated substances, and therefore not considered in national and international monitoring programs, even though they may have a potential impact on the environment due to their continuous input, relative persistence, and/or toxicity. CECs are relevant not only in continental and coastal areas close to their main sources, but also in the open sea, because some of them are likely to be transported long distances through air deposition or absorbed into particulate material. The persistence of many degradable substances in the marine environment increases when they are absorbed into particulate material/sediments and/or when they are subjected to anaerobic conditions that slow down the degradation kinetic of many contaminants. Bioaccumulation of several CECs has been confirmed in different coastal organisms; however, in general, the information available (species and trophic levels considered) is very limited because most studies are mainly focused on specific coastal areas. This book offers useful information about not regulated contaminants that are not considered in international monitoring programs but have potential impacts in coastal and open-sea areas. Therefore reading the book will allow them to improve their view about the real impact of current-use contaminants in the marine environment.Â
Reliability Modeling with Industry 4.0 explores the emerging theoretical and practical developments in reliability engineering in highly digitized industries, including power, computer systems, railway systems, and robotics. Drawing on leading research from around the globe, as well as the latest in industry practice, this book provides cutting edge advice on how to integrate a fully digitized industry 4.0 system for enhanced reliability and reduced maintenance cost. Technologies such as big data, artificial intelligence, and the industrial internet of things are addressed in the context of reliability engineering, providing practical advice on applications.