Carbon dioxide (CO2) capture and conversion to value added products, such as chemicals, polymers, and carbon-based fuels represents a promising approach to transform a potential threat to the environment into a value-added product for long term sustainability. Emerging Carbon Capture Technologies: Towards a Sustainable Future provides a multidisciplinary view of the research that is being carried out in this field, covering materials and processes for CO2 capture and utilization and including a broad discussion of the impact of novel technologies in carbon capture on the energy landscape, society and climate. Of interest to students, researchers and professionals in industries related to greenhouse gas mitigation, post-combustion CO2 capture processes, coal-fired power plants, environmental sustainability, green solvents, green technologies, and the utilization of clean energy for environmental protection, this book covers both the experimental and theoretical aspects of novel materials and process development providing a holistic approach toward a sustainable energy future.
Advances in Computers, Volume 127 presents innovations in computer hardware, software, theory, design and applications, with this updated volume including new chapters on Edge AI, Edge Computing, Edge Analytics, Edge Data Analytics, Edge Native Applications, Edge Platforms, Edge Computing, IoT, Internet of Things, etc.
Advanced Materials for Sustainable Environmental Remediation: Terrestrial and Aquatic Environments presents detailed, comprehensive coverage of novel and advanced materials that can be applied to address the growing global concern of the pollution of natural resources in waters, the air and soil. It provides fundamental knowledge on available materials and treatment processes, as well as applications, including adsorptive remediation and catalytic remediation. Organized clearly by type of material, this book presents a consistent structure for each chapter, including characteristics of the materials, basic and important physicochemical features for environmental remediation applications, routes of synthesis, recent advances as remediation medias, and future perspectives. This book offers an interdisciplinary and practical examination of available materials and processes for environmental remediation that will be valuable to environmental scientists, materials scientists, environmental chemists, and environmental engineers alike.
Advances in Organometallic Chemistry, Volume 77, the latest release in this longstanding serial, is known for its comprehensive coverage of topics in organometallic synthesis, reactions, mechanisms, homogeneous catalysis, and more. It is ideal for a wide range of researchers involved in organometallic chemistry, with this updated release including chapters on Organometallic-like reactivity of group 10 metal-heteroatom sigma bonds, Organometallic interactions between metal nanoparticles and carbon-based molecules: a surface reactivity rationale, Group VI Allenylidene Complexes, and more.
Aggregation-Induced Emission (AIE): A Practical Guide introduces readers to the topic, guiding them through fundamental concepts and the latest advances in applications. The book covers concepts, principles and working mechanisms of AIE in AIE-active luminogens, with different classes of AIE luminogens reviewed, including polymers, three-dimensional frameworks (MOFs and COFs) and supramolecular gels. Special focus is given to the structure-property relationship, structural design strategies, targeted properties and application performance. The book provides readers with a deep understanding, not only on the fundamental principles of AIE, but more importantly, on how AIE luminogens and AIE properties can be incorporated in material development.
Prestressing concrete technology is critical to understanding problems in existing civic structures including railway and highway bridges; to the rehabilitation of older structures; and to the design of new high-speed railway and long-span highway bridges. Analysis and Design of Prestressed Concrete delivers foundational concepts, and the latest research and design methods for the engineering of prestressed concrete, paying particular attention to crack resistance in the design of high-speed railway and long-span highway prestressed concrete bridges. The volume offers readers a comprehensive resource on prestressing technology and applications, as well as the advanced treatment of prestress losses and performance. Key aspects of this volume include analysis and design of prestressed concrete structures using a prestressing knowledge system, from initial stages to service; detailed loss calculation; time-dependent analysis on cross-sectional stresses; straightforward, simplified methods specified in codes; and in-depth calculation methods. Sixteen chapters combine standards and current research, theoretical analysis, and design methods into a practical resource on the analysis and design of prestressed concrete, as well as presenting novel calculation methods and theoretical models of practical use to engineers.
Analytical Approaches for Reinforced Concrete presents mathematically-derived theories and equations for RC design and construction. The book applies deductive reasoning, logic and mathematics to RC. Laying out, deductively, the principles of RC, it encourages researchers to re-imagine and innovate using a solid conceptual framework. Sections consider the reasoning behind key theories, as well as problems that remain unsolved. The title presents key ideas in simple language and illustrates them clearly to help the reader grasp difficult concepts and develop a solid foundation, grounded in mathematics, for further study and research. The book is future-oriented, demonstrating theories that are applicable not only to conventional reinforced concrete members, but also to the envisaged structures of tomorrow. Such developments will increasingly require a deep, deductive understanding of RC. This title is the first of its kind, presenting a fresh analytical approach to reinforced concrete design and construction. Â
Simulation and Optimization in Process Engineering: The Benefit of Mathematical Methods in Applications of the Process Industry brings together examples where the successful transfer of progress made in mathematical simulation and optimization has led to innovations in an industrial context that created substantial benefit. Containing introductory accounts on scientific progress in the most relevant topics of process engineering (substance properties, simulation, optimization, optimal control and real time optimization), the examples included illustrate how such scientific progress has been transferred to innovations that delivered a measurable impact, covering details of the methods used, and more. With each chapter bringing together expertise from academia and industry, this book is the first of its kind, providing demonstratable insights.
Nuclear Decommissioning Case Studies: Safety, Environmental and Security Rules, Volume Four in Michele Laraia’s series that presents a selection of global case studies on different aspects of Nuclear Decommissioning, focuses on the people side, including public perception, public relations and human factors. The book presents a selection of case studies on stakeholders, socioeconomics and more, providing readers with a guide on how to deal with common, often contentious, challenges. The events covered in this publication range from safety factors, stakeholder motivation and involvement and leadership adequacies. Decommissioning experts, including regulators, operators, waste managers, researchers and academics will find this book to be suitable supplementary material to Michele Laraia’s reference works on the theory and applications of nuclear decommissioning.
Bionanocomposites for Food Packaging Applications provides fundamental information on recent developments in this important field of research. The book comprehensively summarizes recent technical research accomplishments in bionanocomposites for food packaging applications. It discusses various aspects of green and sustainable bionanocomposites from the point-of-view of chemistry and engineering. Key chapters include methods of fabrication, processing and advanced production techniques, characterization, PLA, PCL, PGA, Poly (butylene succinate), Chitosan, Starch, Cellulose, PHAs, PHB, Carrageenan, Lignin and Protein-based bionanocomposites for food packaging applications. In addition, the book highlights lifecycle analysis and impacts on health and the environment. Modern technologies for processing and strategies for improving performance, such as biodegradability and permeability, both of which are key factors to achieve environmentally friendly alternatives to more traditional plastic materials are also included.