Studies in Natural Products Chemistry, Volume 68, covers the synthesis or testing and recording of the medicinal properties of natural products, providing cutting-edge accounts surrounding developments in the isolation, structure elucidation, synthesis, biosynthesis and pharmacology of a diverse array of bioactive natural products and their exciting developments in phytochemistry. As natural products in the plant and animal kingdom offer a huge diversity of chemical structures that are the result of biosynthetic processes that have been modulated over the millennia through genetic effects, their uses in new drug developments in the pharmaceutical industry has become increasingly important. With rapid developments in spectroscopic techniques and accompanying advances in high-throughput screening techniques, the ability to rapidly isolate and determine the structures and biological activity of natural products has created opportunities for future drug therapies and uses.
Since fossil fuels suffer from dangerous side effects for the environment and their resources are limited, bioenergy attracted many attentions in various aspects as an alternative solution. Therefore, increasing number of researches are conducted every year and the processes updated frequently to make them more economic and industrially beneficial. Advances in Bioenergy and Microfluidic Applications reviews recent developments in this field and covers various advanced bio-applications, which rarely are reviewed elsewhere. The chapters are started from converting biomass to valuable products and continues with applications of biomass in water-treatment, novel sorbents and membranes, refineries, microfluidic devices and etc. The book covers various routes for gaining bioenergy from biomass. Their composition, carbon contents, heat production capacities and other important factors are reviewed in details in different chapters. Then, the processes for upgrading them directly and indirectly (using metabolic engineering and ultrasonic devices) to various fuels are explained. Each process is reviewed both technically and economically and the product analysis is given. Besides, the effect of various catalysts on increasing selectivity and productivity are taken into account. Biofuels are compared with fossil fuels and challenges in the way of bioenergy production are explained. Moreover, advanced bio-applications in membranes, adsorption, waste water treatment, microfluidic devices and etc. are introduced. This book provides a good insight about such bioprocesses and microfluidics devices for researchers, students, professors and related departments and industries that care about energy resources and curious about recent advances in related methods and technologies. Despite other books which review biomass chemistry and conversion, the current book emphasize on the application of biomass in the mentioned areas. Therefore, one can gain a better and more comprehensive insight by reading the book.
Biopolymer-Based Nano Films: Applications in Food Packaging and Wound Healing covers a variety of biofilms, including active biofilms, nisin-silver nano-films, silk fibroin-based composite films, lignocellulose/cellulose-based biofilms, carboxymethyl cellulose-coated polypropylene, hybrid film-loaded antimicrobials, chitosan hybrid systems, pullulan, and biopolymers films. The applications of these nano-biofilms in different fields, particularly in food packaging, wound healing, and as potential antimicrobials against new, emerging, and multidrug resistant microbes are also discussed. This is an important resource for researchers in the fields of pharmacology, nanotechnology, microbiology, biotechnology, and for clinicians. The possibility of associating nanotechnology with biotechnology helps with the creation of innovative new products and the development of processes at the molecular level. Within this context, nanobiotechnology advances and revolutionizes several scientific fields. In the development of new technologies and products, it is also necessary to develop "platforms" that allow the specific application and delivery of compounds/actives in a controlled, specific and non-toxic way.
Metal Oxide-Based Nanostructured Electrocatalysts for Fuel Cells, Electrolyzers, and Metal-Air Batteries is a comprehensive book summarizing the recent overview of these new materials developed to date. The book is motivated by research that focuses on the reduction of noble metal content in catalysts to reduce the cost associated to the entire system. Metal oxides gained significant interest in heterogeneous catalysis for basic research and industrial deployment. Metal Oxide-Based Nanostructured Electrocatalysts for Fuel Cells, Electrolyzers, and Metal-Air Batteries puts these opportunities and challenges into a broad context, discusses the recent researches and technological advances, and finally provides several pathways and guidelines that could inspire the development of ground-breaking electrochemical devices for energy production or storage. Its primary focus is how materials development is an important approach to produce electricity for key applications such as automotive and industrial. The book is appropriate for those working in academia and R&D in the disciplines of materials science, chemistry, electrochemistry, and engineering.
Wastewater Treatment: Cutting-Edge Molecular Tools, Techniques and Applied Aspects reports new findings in existing molecular biology strategies, including their limitations, challenges and potential application to remove environmental pollutants through advancements made in cutting edge tools. In addition, the book introduces new trends and advances in environmental bioremediation with thorough discussions on recent developments in this field.
Hybrid Nuclear Energy Systems: A Sustainable Solution for the 21st Century provides practical insights on the environmental impact of the hybrid systems discussed, as well as important technical, economic, licensing and safety considerations. This book acts as a guide for the implementation of hybrid energy systems and authoritatively compares the benefits and possible downfalls of each technology. This enables the reader to analyze their own setting or research and evaluate the most economical and effective solution. Energy engineering researchers and professional engineers will benefit from the practical and technical approach of this book. This book will also benefit regulators and economists who will gain a clear understanding of how a hybrid system is not only designed, but also how societies will benefit from a cleaner and more abundant energy source.
Polymers used in electronics and electrical engineering are essential to the development of high-tech products, with applications in space, aviation, health, automotive, communication, robotics, consumer products, and beyond. Typical features of mainstream polymers such as mechanical performance, optical behavior, and environmental stability frequently need to be enhanced to perform in these demanding applications, creating the need to develop special grades or use completely new chemistry for their synthesis. Similarly, the typical set of properties included in the description of mainstream polymers are not sufficient for polymer selection for these applications, as they require different data, data that is meticulously detailed in the Handbook of Polymers for Electronics. The book provides readers with the most up-to-date information from the existing literature, manufacturing data, and patent filings. Presenting data for all polymers based on a consistent pattern of arrangement, the book provides details organized into the following sections: General; history; synthesis; structure; commercial polymers; physical properties; electrical properties; mechanical properties; chemical resistance; flammability; weather stability; thermal stability; biodegradation; toxicity; environmental impact; processing; blends; analysis. The contents, scope, treatment and novelty of the data makes this book an essential resource for anyone working with polymeric materials used in modern electronic applications.
Petroleum Economics and Risk Analysis: A Practical Guide to E&P Investment Decision-Making, Volume 69, is a practical guide to the economic evaluation, risk evaluation and decision analysis of oil and gas projects through all stages of the asset lifecycle, from exploration to late life opportunities. This book will help readers understand and make decisions with regard to petroleum investment, portfolio analysis, discounting, profitability indicators, decision tree analysis, reserves accounting, exploration and production (E&P) project evaluation, and E&P asset evaluation.
Mathematical Modelling of Contemporary Electricity Markets reviews major methodologies and tools to accurately analyze and forecast contemporary electricity markets in a ways that is ideal for practitioner and academic audiences. Approaches include optimization, neural networks, genetic algorithms, co-optimization, econometrics, E3 models and energy system models. The work examines how new challenges affect power market modeling, including discussions of stochastic renewables, price volatility, dynamic participation of demand, integration of storage and electric vehicles, interdependence with other commodity markets and the evolution of policy developments (market coupling processes, security of supply). Coverage addresses all major forms of electricity markets: day-ahead, forward, intraday, balancing, and capacity.
Handbook of Advanced Approaches towards Pollution Prevention and Control, Volume One: Conventional and Innovative Technology, and Assessment Techniques for Pollution Prevention and Control condenses all relevant information on pollution prevention and control in a single source. This handbook (Volume One of Two) covers the principles of pollution prevention and control technologies, recent advances in pollution prevention, control technologies and their sustainability, modernization in pollution prevention, and control technologies for future and next generation pollution prevention. This book is an indispensable resource for researchers and academic staff in chemical and process engineering, safety engineering, environmental engineering, biotechnology and materials engineering.