Skip to main content

Books in Physics

Physics titles offer comprehensive research and advancements across the fundamental and applied areas of physical science. From quantum mechanics and particle physics to astrophysics and materials science, these titles drive innovation and deepen understanding of the principles governing the universe. Essential for researchers, educators, and students, this collection supports scientific progress and practical applications across a diverse range of physics disciplines.

  • Gaseous Electronics

    • 1st Edition
    • Merle Hirsh
    • English
    Gaseous Electronics, Volume I: Electrical Discharges deals with the intelligent application of gaseous electronics principles and devices to a variety of practical problems, with emphasis on electrical discharges. This text consists of seven chapters and begins with a discussion on the short history of gaseous electronics. The discussion then turns to the behavior of glow discharges when the applied voltage is direct current or low-frequency alternating current. The applications of cataphoresis, including gas purification, and the effects of cataphoresis on gas lasers are considered. The chapters that follow explore high-frequency and microwave discharges; corona discharges; arcs and torches; and plasmas generated by electron beams and shock waves. These treatments of various kinds of discharge include macroscopic manifestations, such as I-V characteristics and qualitative phenomena, as well as descriptions of the underlying phenomena in terms of microscopic processes. This book is intended for research students and practitioners of electronics and electrical engineering as well as physics.
  • Space Groups and Their Representations

    • 1st Edition
    • Gertjan Koster
    • English
    Space Groups and Their Representations focuses on the discussions on space groups and their corresponding numerical and analytical representations. Divided into six chapters, the book starts with the presentation of the nature and properties of space groups. This topic includes orthogonal transformations and Bravais lattices, such as cubic system, triclinic system, trigonal and hexagonal systems, monoclinic systems, and tetragonal systems. The book then proceeds with the discussion on the irreducible representations of space groups, and then covers the general theory, simplification, and introduction. Discussions on various examples of space groups are given in the third chapter. Numerical representations are provided to support the validity of the different space groups, including discussions on double groups. The book also points out that the irreducible representation of space groups and the application of representation theory to them manifest the latest developments on geometrical crystallography. The text is a vital source of data for scholars and readers who are interested to study space groups and crystallography.
  • Recent Research in Molecular Beams

    • 1st Edition
    • Immanual Estermann
    • English
    Recent Research in Molecular Beam is a collection of scientific papers that have been inspired by Otto Stern, the founder of Molecular Beam Research. This book is composed of 10 chapters and begins with discussions on the early history of molecular beam research. The next chapters describe the velocity distribution measurements made on potassium molecular beams with a fixed-frequency, variable phase velocity selector, along with a brief consideration of the principles and concepts of electron magnetic moment and atomic magnetism. A chapter presents the atomic beam spectroscopic experiments on the metastable state of the hydrogen-like atoms that depend on a wholly different principle for the detection of transitions. This text further explores the effects of variations in the oscillatory field amplitudes, perturbations by neighboring resonances, perturbations by oscillatory fields, variations in the fixed field amplitudes, and phase shifts of the oscillatory fields. These topics are followed by a comparison of advantages and limitations of various techniques for spin property measurement as they apply in particular to radioactive nuclei, such as optical and molecular gas microwave spectroscopy, nuclear and paramagnetic resonance, and atomic beams. The remaining chapters examine fluid friction in a rarefied gas flow; some applications of molecular beam techniques to chemistry; and the polarized neutrons based on a Stern-Gerlach experiment. This work will be of great value to workers and researchers in molecular beam field.
  • Theory of Dielectric Optical Waveguides 2e

    • 2nd Edition
    • Paul Liao
    • English
    Theory of Dialectric Optical Waveguides, Second Edition focuses on the practical usage of optical waveguides. This book explores the rapid growth of integrated optics, which is devoted to the development of microscopic optical circuits based on thin film technology. Organized into nine chapters, this edition starts with an overview of the properties of dielectric slab waveguides. This book then examines the theory of directional couplers with and without diffraction gratings. Other chapters describe the numerical methods for solving guided mode as well as wave propagation problems. This text discusses as well the beam propagation method and the popular effective refractive index method. The final chapter deals with the significance of nonlinear phenomena. This book is a valuable resource for undergraduate and graduate students of physics and electrical engineering. Practicing engineers and scientists in the fields of integrated optics, optical communications, and fiber sensors will find this book extremely useful.
  • Dynamics of Gas-Surface Scattering

    • 1st Edition
    • Frank O. Goodman
    • English
    Dynamics of Gas-Surface Scattering deals with the dynamics of scattering as inferred from known properties of gases and solids. This book discusses measurements of spatial distributions of scattered atomic and molecular streams, and of the energy and momentum which gas particles exchange at solid surfaces. It also considers two regimes of scattering, both of which are associated with a lower range of incident gas energies: the thermal and structure scattering regimes. Comprised of 10 chapters, this book opens with a brief historical overview of the early experiments that investigated the dynamics of scattering of gases by surfaces. The discussion then turns to some elements of the kinetic theory of gases; intermodular potentials and interaction regimes; and classical-mechanical lattice models used in gas-surface scattering theory. The applications of molecular beams to the study of gas-surface scattering phenomena are also described. The remaining chapters focus on experiments and theories on scattering of molecular streams by surfaces of solids, with emphasis on thermal and structure regimes of inelastic scattering; quantum theory of gas-surface scattering; and quantum mechanical scattering phenomena. This text concludes with an analysis of energy exchange processes that may occur when a solid surface is completely immersed in a still gas. This monograph will be a valuable resource for students and practitioners of physics, chemistry, and applied mathematics.
  • Quantum Liquids

    • 1st Edition
    • J. Ruvalds
    • English
    Quantum Liquids contains lectures presented at the International School of Low Temperature Physics in Erice, Italy, on June 11-25, 1977. The book reviews developments in the study of superfluid phases of the 3He system and in the understanding of quasiparticles and their interactions in the Bose 4He system, along with recent work on the 3He-4He mixtures. Comprised of 10 chapters, this volume begins with an overview of the renormalization group theory, critical phenomena, and phase transition in superfluid helium. It then discusses the superfluid density and the nature of critical singularities, the theory and practice of neutron scattering, and scattering from weakly interacting quantum liquids. The reader is also introduced to the superfluidity of liquid helium films, light scattering from superfluid helium, and the theory of superfluid 3He. Other chapters focus on superfluid flow in helium-4 compared to that in helium-3, the physical properties of small droplets of helium as analogs of heavy nuclei, and experimental properties of superfluid 3He. Excitations in 3He-4He mixtures, bound excitations in liquid He4, and temperature dependence of the single roton energy and lifetime are also discussed. Physicists and students of physics will find this book extremely useful.
  • Particle Accelerator Design: Computer Programs

    • 1st Edition
    • John Colonias
    • English
    Particle Accelerator Design: Computer Programs describes some of the most important computer programs applicable to the design of particle accelerators. Computer programs that calculate magnetic and electric fields are considered, along with programs that calculate orbits of particles in a magnetic and/or electric field. Some representative programs useful in the design of linear accelerator-type cavities are also discussed. This book is comprised of six chapters and begins with a review of two-dimensional magnetostatic programs, including TRIM, LINDA, NUTCRACKER, MAREC, GRACY, and COILS. The University of Colorado's magnet program is also examined. The next chapter is devoted to programs capable of solving problems relating to the calculation of electrostatic fields in two-dimensional geometries. The reader is also introduced to programs that perform calculations of three-dimensional linear and nonlinear problems, along with programs that employ matrix formalism and integration of equations of motion. The final chapter looks at programs for linear accelerator-type cavities, including CURE, JESSY, MESSYMESH, and AZTEC. This monograph will be a useful resource for physical scientists, engineers, and computer programmers.
  • Physics of Radiation Effects in Crystals

    • 1st Edition
    • Volume 13
    • R.A. Johnson + 1 more
    • English
    ``Physics of Radiation Effects in Crystals'' is presented in two parts. The first part covers the general background and theory of radiation effects in crystals, including the theory describing the generation of crystal lattice defects by radiation, the kinetic approach to the study of the disposition of these defects and the effects of the diffusion of these defects on alloy compositions and phases. Specific problems of current interest are treated in the second part and include anisotropic dimensional changes in x-uranium, zirconium and graphite, acceleration of thermal creep in reactor materials, and radiation damage of semiconductors and superconductors.
  • Random Processes: Measurement, Analysis and Simulation

    • 1st Edition
    • J. Cacko + 2 more
    • English
    This book covers the basic topics associated with the measurement, analysis and simulation of random environmental processes which are encountered in practice when dealing with the dynamics, fatigue and reliability of structures in real environmental conditions. The treatment is self-contained and the authors have brought together and integrated the most important information relevant to this topic in order that the newcomer can see and study it as a whole. This approach should also be of interest to experienced engineers from fatigue laboratories who want to learn more about the possible methods of simulation, especially for use in real time on electrohydraulic computer-controlled loading machines.Problems of constructing a measuring system are dealt with in the first chapter. Here the authors discuss the choice of measuring conditions and locations, as well as the organization of a chain of devices for measuring and recording random environmental processes. Some experience gained from practical measurements is also presented. The recorded processes are further analysed by various methods. The choice is governed by the aims of the measurements and applications of the results. Chapter 2 is thus devoted to methods of random process evaluations for digital computers, both from the fatigue and dynamic point of view. The most important chapter is Chapter 3 as this presents a review of up-to-date methods of random process simulation with given statistical characteristics. These methods naturally follow those of random process analysis, and their results form initial data for the corresponding simulations algorithms, including occurrences of characteristic parameters of counting methods, reproduction of correlation theory characteristics and of autoregressive models. The simulation of non-stationary processes is treated in depth, taking into account their importance for practical applications and also the lack of information of this subject.The book is intended to help resolve many practical problems concerning the methods and quality of environmental process evaluation and simulation which can arise when up-to-date loading systems with computer control are being used in material, component and structural fatigue and dynamic research.
  • Nuclear Fission

    • 1st Edition
    • Robert Vandenbosch
    • English
    Nuclear Fission provides a comprehensive account of nuclear fission. This book is organized into 14 chapters. Chapter I introduces and discusses the discovery of fission, followed by a treatment of transition nucleus in Chapters II to VIII. Chapter IX deals with the theories of mass and energy distributions. The kinetic energy release in fission is described in Chapter X, while the distribution of mass and charge in fission is considered in Chapter XI. Chapters XII and XIII consider the emission of neutrons and ? rays from fission. Detailed studies of the ? particles accompanying fission are covered in the last chapter. This volume is intended for students, but is also valuable to research scientists interested in the physics and chemistry of fission.