Skip to main content

Books in Physics

Physics titles offer comprehensive research and advancements across the fundamental and applied areas of physical science. From quantum mechanics and particle physics to astrophysics and materials science, these titles drive innovation and deepen understanding of the principles governing the universe. Essential for researchers, educators, and students, this collection supports scientific progress and practical applications across a diverse range of physics disciplines.

    • Case Studies in Atomic Physics 4

      • 1st Edition
      • E McDaniel
      • English
      Case Studies in Atomic Physics IV presents a collection of six case studies in atomic physics. The first study deals with the correspondence identities associated with the Coulomb potential: the Rutherford scattering identity, the Bohr-Sommerfeld identity, and the Fock identity. The second paper reviews advances in recombination. This is followed by a three-part study on relativistic self-consistent field (SCF) calculations. The first part considers relativistic SCF calculations in general, and in particular discusses different configurational averaging techniques and various statistical exchange approximations. The second part reviews the relativistic theory of hyperfine structure. The third part makes a number of comparisons between experimental results and values obtained in different SCF schemes, with exact as well as approximate exchange. The next case study on pseudopotentials compares the results of model potential and pseudopotential calculations. The final study reviews, on a kinetic basis, the behavior of low density ion swarms in a neutral gas.
    • Nonlinear System Analysis

      • 1st Edition
      • Austin Blaquiere
      • English
      Nonlinear System Analysis focuses on the study of systems whose behavior is governed by nonlinear differential equations. This book is composed of nine chapters that cover some problems that play a major role in engineering and physics. The opening chapter briefly introduces the difference between linear and nonlinear systems. Considerable chapters are devoted to engineering and physics related problems and their applications to particle accelerators, frequency measurements, and masers. Included in these chapters are important practical problems, such as synchronization, stability of systems with periodic coefficients, and effect of random disturbances. The remaining chapters examine random fluctuations of the motion and self-oscillators. This book is intended primarily for engineers and physicists.
    • Fluid Mechanics and Singular Perturbations

      • 1st Edition
      • Paco Lagerstrom
      • English
      Fluid Mechanics and Singular Perturbations: A Collection of Papers by Saul Kaplun focuses on the works and contributions of Saul Kaplun to the studies of fluid mechanics and singular perturbations. The book first discusses the role of coordinate system in boundary-layer theory. Boundary-layer approximations as limits of exact solutions; comparison of different boundary-layer solutions; and comparison with exact solution and choice of optimal are discussed. The text also looks at asymptotic experiment of Navier-Stokes solution for small Reynolds numbers; basic concepts in the theory of singular perturbations and their applications to flow at small Reynolds numbers; and low Reynolds number flow. The book discusses as well a generalization of Poiseuille and Couette flows and nature of solutions of the boundary-layer equations. Numerical solutions and analyses are presented. The text also looks at compatibility condition for boundary layer equation at a point of zero skin friction. Intuitive background; the past-like solution and its principal asymptotic expansions; and class of compatible profiles are discussed. The book is a valuable source of information for readers who want to study fluid mechanics.
    • A Vector Approach To Oscillations

      • 1st Edition
      • Henry G. Booker
      • English
      A Vector Approach to Oscillations focuses on the processes in handling oscillations. Divided into four chapters, the book opens with discussions on the technique of handling oscillations. Included in the discussions are the addition and subtraction of oscillations using vectors; the square root of two vectors; the role of vector algebra in oscillation analysis; and the quotient of two vectors in Cartesian components. Discussions on vector algebra come next. Given importance are the algebraic and polynomial functions of a vector; the connection of vector algebra and scalar algebra; and the factorization of the polynomial functions of a vector. The book also presents graphical representations of vector functions of a vector. Included are numerical analyses and representations. The last part of the book deals with exponential function of a vector. Numerical representations and analyses are also provided to validate the claims of the authors. Given the importance of data provided, this book is a valuable reference for readers who want to study oscillations.
    • Stratified Flows

      • 1st Edition
      • Chia-Shun Yih
      • English
      Stratified Flows is the second edition of the book Dynamics of Nonhomogenous Fluids. This book discusses the flow of a fluid of variable density or entropy in a gravitational field. In this edition, corrections have been made; unnecessary parts have been omitted; and new sections as well as notes on results related to the subject have been added. This book includes a general discussion of the effects of density or entropy and the structure of stratified flows; waves of small amplitude; the Eigenvalue problem; dependence of phase velocity on wavelength; wave motion; steady flows of finite amplitude; and types of solutions for steady flows. This edition also covers other topics such as hydrodynamic stability; flows in porous media; and the analogy between gravitational and electromagnetic forces. This text is recommended for those in the field of physics who would like to be familiarized with stratified flows and its related concepts.
    • Plasma Waves

      • 1st Edition
      • D.G. Swanson
      • English
      Plasma Waves discusses the basic development and equations for the many aspects of plasma waves. The book is organized into two major parts, examining both linear and nonlinear plasma waves in the eight chapters it encompasses. After briefly discussing the properties and applications of plasma wave, the book goes on examining the wave types in a cold, magnetized plasma and the general forms of the dispersion relation that characterize the waves and label the various types of solutions. Chapters 3 and 4 analyze the acoustic phenomena through the fluid model of plasma and the kinetic effects. These chapters also describe the averaging process for the fluid element motion using expanded Boltzmann equation for each species in a velocity moment expansion, truncating the expansion at some suitable level, depending on the particular problem. The remaining four chapters discuss the effects of adding sharp boundaries, slowly varying inhomogeneities, nonlinearities at several levels, and turbulent plasmas. Supplementary texts on complex variables and the special functions in plasma physics are provided in the concluding section of this text. The book is an advanced text for graduate students who have had an introductory plasma course at some level.
    • Lectures on The Many-Body Problems V2

      • 1st Edition
      • E.R. Caianiello
      • English
      Lectures on the Many-Body Problem is a compilation of papers delivered at the Fifth International School of Physics, held at Ravello, Italy in April 1963. The book is devoted to the techniques of many-body theory, which are used in finding solutions to difficult problems encountered in solid-state physics. The text discusses such topics as the discontinuities in the drift velocity of ions in liquid helium; density fluctuation excitations in many-particle systems; tunneling from a many-particle point of view; the mathematics of second quantization for systems of fermions; and correlation functions and macroscopic equations. Theoretical physicists will find the monograph invaluable.
    • Internal Conversion Coefficients for Multipolarities E1,…, E4, M1,…, M4

      • 1st Edition
      • Katharine Way
      • English
      Atomic and Nuclear Data Reprints, Volume 1: Internal Conversion Coefficients: For Multipolarities E1,. . ., E4, M1,. . ., M4 covers a complete set of values for the internal conversion coefficients. This volume provides a compact tool for the analysis of nuclear radiations. This book contains four chapters and starts with a presentation of values of the internal conversion coefficient, number of electrons per photon emitted in a nuclear transition, from relativistic self-consistent-fiel... calculation, which takes into account finite nuclear size, hole and exchange effects, experimental electron binding energies, and vacuum polarization. The next two chapters provide the conversion coefficients for the four lowest electric and magnetic nuclear transition multipoles, E1 . . . E4, M1 . . . M4, for electrons in the K- , L - , and M-shells and L-, M-, and N-subshells as a function of nuclear-transition or gamma-ray energy. The last chapter presents the K- and L-shell internal conversion coefficients for transition energies above 1 MeV.
    • Tree Rings and Climate

      • 1st Edition
      • H Fritts
      • English
      Tree Rings and Climate deals with the principles of dendrochronology, with emphasis on tree-ring studies involving climate-related problems. This book looks at the spatial and temporal variations in tree-ring growth and how they can be used to reconstruct past climate. Factors and conditions that appear most relevant to tree-ring research are highlighted. Comprised of nine chapters, this book opens with an overview of the basic biological facts and principles of tree growth, as well as the most important terms, principles, and concepts of dendrochronology. The discussion then shifts to the basic biology governing the response of ring width to variation in climate; systematic variations in the width and cell structure of annual tree rings; and the significance of tree growth and structure to dendroclimatology. The movement of materials and internal water relations of trees are also considered, along with photosynthesis, respiration, and the climatic and environmental system. Models of the growth-climate relationships as well as the basic statistics and methods of analysis of these relationships are described. The final chapter includes a general discussion of dendroclimatographic data and presents examples of statistical models that are useful for reconstructing spatial variations in climate. This monograph will be of interest to climatologists, college students, and practitioners in fields such as botany, archaeology, hydrology, oceanography, biology, physiology, forestry, and geophysics.
    • Transient Waves in Visco-Elastic Media

      • 1st Edition
      • Norman Ricker
      • English
      Developments in Solid Earth Geophysics 10: Transient Waves in Visco-Elastic Media deals with the propagation of transient elastic disturbances in visco-elastic media. More specifically, it explores the visco-elastic behavior of a medium, whether gaseous, liquid, or solid, for very-small-amplitude disturbances. This volume provides a historical overview of the theory of the propagation of elastic waves in solid bodies, along with seismic prospecting and the nature of seismograms. It also discusses the seismic experiments, the behavior of waves propagated in accordance with the Stokes wave equation, and wavelet functions and their polynomials. The book explains the laws of propagation of seismic wavelets and seismic ray paths, as well as the equations of wavelet propagation, the velocity-type seismic wavelet, and the spectrum of the wavelet. It discusses the motion of a mechanical seismograph disturbed by extraneous forces or motions. It also provides information on the differential equation describing the motion of a galvanometer, laboratory studies of wavelet contraction, and characteristics of a wavelet-contractor amplifier. Furthermore, the book explains the experimental studies of the primary seismic disturbance and internal friction. This monograph is a valuable source of information for physicists, students who want to pursue a career in geophysics or selenophysics, and those who actively working in these fields.