Recent Research in Molecular Beam is a collection of scientific papers that have been inspired by Otto Stern, the founder of Molecular Beam Research. This book is composed of 10 chapters and begins with discussions on the early history of molecular beam research. The next chapters describe the velocity distribution measurements made on potassium molecular beams with a fixed-frequency, variable phase velocity selector, along with a brief consideration of the principles and concepts of electron magnetic moment and atomic magnetism. A chapter presents the atomic beam spectroscopic experiments on the metastable state of the hydrogen-like atoms that depend on a wholly different principle for the detection of transitions. This text further explores the effects of variations in the oscillatory field amplitudes, perturbations by neighboring resonances, perturbations by oscillatory fields, variations in the fixed field amplitudes, and phase shifts of the oscillatory fields. These topics are followed by a comparison of advantages and limitations of various techniques for spin property measurement as they apply in particular to radioactive nuclei, such as optical and molecular gas microwave spectroscopy, nuclear and paramagnetic resonance, and atomic beams. The remaining chapters examine fluid friction in a rarefied gas flow; some applications of molecular beam techniques to chemistry; and the polarized neutrons based on a Stern-Gerlach experiment. This work will be of great value to workers and researchers in molecular beam field.
This volume provides up to date information on the experimental, theoretical and technological aspects of film growth assisted by ion beams. Ion beam assisted film growth is one of the most effective techniques in aiding the growth of high-quality thin solid films in a controlled way. Moreover, ion beams play a dominant role in the reduction of the growth temperature of thin films of high melting point materials. In this way, ion beams make a considerable and complex contribution to film growth. The volume will be essential reading for scientists, engineers and students working in this field.
Advances in Quantum Chemistry presents surveys of current developments in this rapidly developing field. With invited reviews written by leading international researchers, each presenting new results, it provides a single vehicle for following progress in this interdisciplinary area.
Cyclodextrin Materials Photochemistry, Photophysics and Photobiology provides to the scientific community the state-of-the art on photochemistry, photophysics and photobiology of cyclodextrin complexes in one book, and the chapters material will trigger further research in applied science connected to these small nanocapsules.The chapters contain a large number of information of value not only to readers working in the field of cyclodextrins, but also to researchers working on related areas like those of supramolecular chemistry, nanochemistry, and in general in nano- and biotechnology.
This text provides a thorough explanation of the underlying principles of spectral analysis and the full range of estimation techniques used in engineering. The applications of these techniques are demonstrated in numerous case studies, illustrating the approach required and the compromises to be made when solving real engineering problems. The principles outlined in these case studies are applicable over the full range of engineering disciplines and all the reader requires is an understanding of elementary calculus and basic statistics. The realistic approach and comprehensive nature of this text will provide undergraduate engineers and physicists of all disciplines with an invaluable introduction to the subject and the detailed case studies will interest the experienced professional.
Photochemical processes form the basis of life. Energy transfer through photons also underlies a wide range of phenomena ranging from the motion of atoms and molecules to the assembly of systems of molecules, such as polymers, Langmuir-Blodgett films and even liquid crystals.Photochemical Processes in Organized Molecular Systems provides an overview of recent photochemical investigations of systems of molecules. The book is divided into four parts: the first two deal with current progress on the understanding of photoinduced chemical processes, the third and fourth chapter deal with the photochemistry of organized molecular systems including polymers, micelles and liquid crystals.This book should be studied by all who want to know more about this promising field of photochemical research, and about the fascinating processes that light can bring about.