Skip to main content

Books in Mathematics

The Mathematics collection presents a range of foundational and advanced research content across applied and discrete mathematics, including fields such as Computational Mathematics; Differential Equations; Linear Algebra; Modelling & Simulation; Numerical Analysis; Probability & Statistics.

  • Combinatorics '84

    • 1st Edition
    • M. Biliotti + 4 more
    • English
    Interest in combinatorial techniques has been greatly enhanced by the applications they may offer in connection with computer technology. The 38 papers in this volume survey the state of the art and report on recent results in Combinatorial Geometries and their applications.Contrib... V. Abatangelo, L. Beneteau, W. Benz, A. Beutelspacher, A. Bichara, M. Biliotti, P. Biondi, F. Bonetti, R. Capodaglio di Cocco, P.V. Ceccherini, L. Cerlienco, N. Civolani, M. de Soete, M. Deza, F. Eugeni, G. Faina, P. Filip, S. Fiorini, J.C. Fisher, M. Gionfriddo, W. Heise, A. Herzer, M. Hille, J.W.P. Hirschfield, T. Ihringer, G. Korchmaros, F. Kramer, H. Kramer, P. Lancellotti, B. Larato, D. Lenzi, A. Lizzio, G. Lo Faro, N.A. Malara, M.C. Marino, N. Melone, G. Menichetti, K. Metsch, S. Milici, G. Nicoletti, C. Pellegrino, G. Pica, F. Piras, T. Pisanski, G.-C. Rota, A. Sappa, D. Senato, G. Tallini, J.A. Thas, N. Venanzangeli, A.M. Venezia, A.C.S. Ventre, H. Wefelscheid, B.J. Wilson, N. Zagaglia Salvi, H. Zeitler.
  • Transform Analysis of Generalized Functions

    • 1st Edition
    • Volume 119
    • O.P. Misra + 1 more
    • English
    Transform Analysis of Generalized Functions concentrates on finite parts of integrals, generalized functions and distributions. It gives a unified treatment of the distributional setting with transform analysis, i.e. Fourier, Laplace, Stieltjes, Mellin, Hankel and Bessel Series.Included are accounts of applications of the theory of integral transforms in a distributional setting to the solution of problems arising in mathematical physics. Information on distributional solutions of differential, partial differential equations and integral equations is conveniently collected here.The volume will serve as introductory and reference material for those interested in analysis, applications, physics and engineering.
  • Aspects of Mathematics and its Applications

    • 1st Edition
    • J.A. Barroso
    • English
  • Mathematical Models and Finite Elements for Reservoir Simulation

    Single Phase, Multiphase and Multicomponent Flows through Porous Media
    • 1st Edition
    • Volume 17
    • G. Chavent + 1 more
    • English
    Numerical simulators for oil reservoirs have been developed over the last twenty years and are now widely used by oil companies. The research, however, has taken place largely within the industry itself, and has remained somewhat inaccessible to the scientific community. This book hopes to remedy the situation by means of its synthesized presentation of the models used in reservoir simulation, in a form understandable to both mathematicians and engineers.The book aims to initiate a rigorous mathematical study of the immiscible flow models, partly by using the novel `global pressure' approach in treating incompressible two-phase problems. A finite element approximation technique based on the global pressure variational model is presented, and new approaches to the modelling of various kinds of multiphase flow through porous media are introduced.Much of the material is highly original, and has not been presented elsewhere. The mathematical and numerical models should be of great interest to applied mathematicians, and to engineers seeking an alternative approach to reservoir modelling.
  • Stability and Periodic Solutions of Ordinary and Functional Differential Equations

    • 1st Edition
    • Volume 178
    • T. A. Burton
    • English
    In this book, we study theoretical and practical aspects of computing methods for mathematical modelling of nonlinear systems. A number of computing techniques are considered, such as methods of operator approximation with any given accuracy; operator interpolation techniques including a non-Lagrange interpolation; methods of system representation subject to constraints associated with concepts of causality, memory and stationarity; methods of system representation with an accuracy that is the best within a given class of models; methods of covariance matrix estimation;methods for low-rank matrix approximations; hybrid methods based on a combination of iterative procedures and best operator approximation; andmethods for information compression and filtering under condition that a filter model should satisfy restrictions associated with causality and different types of memory.As a result, the book represents a blend of new methods in general computational analysis,and specific, but also generic, techniques for study of systems theory ant its particularbranches, such as optimal filtering and information compression.
  • Analysis on Real and Complex Manifolds

    • 2nd Edition
    • Volume 35
    • R. Narasimhan
    • English
    Chapter 1 presents theorems on differentiable functions often used in differential topology, such as the implicit function theorem, Sard's theorem and Whitney's approximation theorem. The next chapter is an introduction to real and complex manifolds. It contains an exposition of the theorem of Frobenius, the lemmata of Poincaré and Grothendieck with applications of Grothendieck's lemma to complex analysis, the imbedding theorem of Whitney and Thom's transversality theorem. Chapter 3 includes characterizations of linear differentiable operators, due to Peetre and Hormander. The inequalities of Garding and of Friedrichs on elliptic operators are proved and are used to prove the regularity of weak solutions of elliptic equations. The chapter ends with the approximation theorem of Malgrange-Lax and its application to the proof of the Runge theorem on open Riemann surfaces due to Behnke and Stein.
  • Harvey Friedman's Research on the Foundations of Mathematics

    • 1st Edition
    • Volume 117
    • L.A. Harrington + 3 more
    • English
    This volume discusses various aspects of Harvey Friedman's research in the foundations of mathematics over the past fifteen years. It should appeal to a wide audience of mathematicians, computer scientists, and mathematically oriented philosophers.
  • Complex Analysis in Banach Spaces

    Holomorphic Functions and Domains of Holomorphy in Finite and Infinite Dimensions
    • 1st Edition
    • Volume 120
    • J. Mujica
    • English
    Problems arising from the study of holomorphic continuation and holomorphic approximation have been central in the development of complex analysis in finitely many variables, and constitute one of the most promising lines of research in infinite dimensional complex analysis. This book presents a unified view of these topics in both finite and infinite dimensions.
  • Modern General Topology

    • 3rd Edition
    • Volume 33
    • J.-I. Nagata
    • English
    This classic work has been fundamentally revised to take account of recent developments in general topology. The first three chapters remain unchanged except for numerous minor corrections and additional exercises, but chapters IV-VII and the new chapter VIII cover the rapid changes that have occurred since 1968 when the first edition appeared. The reader will find many new topics in chapters IV-VIII, e.g. theory of Wallmann-Shanin's compactification, realcompact space, various generalizations of paracompactness, generalized metric spaces, Dugundji type extension theory, linearly ordered topological space, theory of cardinal functions, dyadic space, etc., that were, in the author's opinion, mostly special or isolated topics some twenty years ago but now settle down into the mainstream of general topology.
  • Fourier Series and Integrals

    • 1st Edition
    • English
    The ideas of Fourier have made their way into every branch of mathematics and mathematical physics, from the theory of numbers to quantum mechanics. Fourier Series and Integrals focuses on the extraordinary power and flexibility of Fourier's basic series and integrals and on the astonishing variety of applications in which it is the chief tool. It presents a mathematical account of Fourier ideas on the circle and the line, on finite commutative groups, and on a few important noncommutative groups. A wide variety of exercises are placed in nearly every section as an integral part of the text.