Skip to main content

Books in Mathematics

The Mathematics collection presents a range of foundational and advanced research content across applied and discrete mathematics, including fields such as Computational Mathematics; Differential Equations; Linear Algebra; Modelling & Simulation; Numerical Analysis; Probability & Statistics.

  • Obstacle Problems in Mathematical Physics

    • 1st Edition
    • Volume 134
    • J.-F. Rodrigues
    • English
    The aim of this research monograph is to present a general account of the applicability of elliptic variational inequalities to the important class of free boundary problems of obstacle type from a unifying point of view of classical Mathematical Physics.The first part of the volume introduces some obstacle type problems which can be reduced to variational inequalities. Part II presents some of the main aspects of the theory of elliptic variational inequalities, from the abstract hilbertian framework to the smoothness of the variational solution, discussing in general the properties of the free boundary and including some results on the obstacle Plateau problem. The last part examines the application to free boundary problems, namely the lubrication-cavitati... problem, the elastoplastic problem, the Signorini (or the boundary obstacle) problem, the dam problem, the continuous casting problem, the electrochemical machining problem and the problem of the flow with wake in a channel past a profile.
  • Nonlinear Methods in Numerical Analysis

    • 1st Edition
    • Volume 1
    • A. Cuyt + 1 more
    • English
    While most textbooks on Numerical Analysis discuss linear techniques for the solution of various numerical problems, this book introduces and illustrates nonlinear methods. It presents several nonlinear techniques resulting mainly from the use of Padé approximants and rational interpolants.
  • Theory of Linear Operations

    • 1st Edition
    • Volume 38
    • S. Banach
    • English
    This classic work by the late Stefan Banach has been translated into English so as to reach a yet wider audience. It contains the basics of the algebra of operators, concentrating on the study of linear operators, which corresponds to that of the linear forms a1x1 + a2x2 + ... + anxn of algebra.The book gathers results concerning linear operators defined in general spaces of a certain kind, principally in Banach spaces, examples of which are: the space of continuous functions, that of the pth-power-summable functions, Hilbert space, etc. The general theorems are interpreted in various mathematical areas, such as group theory, differential equations, integral equations, equations with infinitely many unknowns, functions of a real variable, summation methods and orthogonal series.A new fifty-page section (``Some Aspects of the Present Theory of Banach Spaces'') complements this important monograph.
  • Numerical Approximation of Partial Differential Equations

    • 1st Edition
    • Volume 133
    • E.L. Ortiz
    • English
    This selection of papers is concerned with problems arising in the numerical solution of differential equations, with an emphasis on partial differential equations. There is a balance between theoretical studies of approximation processes, the analysis of specific numerical techniques and the discussion of their application to concrete problems relevant to engineering and science. Special consideration has been given to innovative numerical techniques and to the treatment of three-dimensional and singular problems. These topics are discussed in several of the invited papers.The contributed papers are divided into five parts: techniques of approximation theory which are basic to the numerical treatment of differential equations; numerical techniques based on discrete processes; innovative methods based on polynomial and rational approximation; variational inequalities, conformal transformation and asymptotic techniques; and applications of differential equations to problems in science and engineering.
  • Leonardo Pisano (Fibonacci)

    The Book of Squares
    • 1st Edition
    • L. E. Sigler
    • English
    The Book of Squares by Fibonacci is a gem in the mathematical literature and one of the most important mathematical treatises written in the Middle Ages. It is a collection of theorems on indeterminate analysis and equations of second degree which yield, among other results, a solution to a problem proposed by Master John of Palermo to Leonardo at the Court of Frederick II. The book was dedicated and presented to the Emperor at Pisa in 1225. Dating back to the 13th century the book exhibits the early and continued fascination of men with our number system and the relationship among numbers with special properties such as prime numbers, squares, and odd numbers. The faithful translation into modern English and the commentary by the translator make this book accessible to professional mathematicians and amateurs who have always been intrigued by the lure of our number system.
  • Descriptive Set Theory

    • 1st Edition
    • Volume 100
    • Y.N. Moschovakis
    • English
    Now available in paperback, this monograph is a self-contained exposition of the main results and methods of descriptive set theory. It develops all the necessary background material from logic and recursion theory, and treats both classical descriptive set theory and the effective theory developed by logicians.
  • János Bolyai Appendix

    The Theory of Space
    • 1st Edition
    • Volume 138
    • F. Kárteszi + 1 more
    • English
    The epoch-making work of János Bolyai is presented here, together with a supplement outlining Hungarian political and science history to help the reader to get acquainted with the miserable fate of János Bolyai and with his intellectual world. A facsimile of a copy of Bolyai's original 1831 Scientia Spatii (also known as the Appendix) is included, together with a translation. Comments and notes, and a survey of the effects of his work, complete the volume.
  • Logic Colloquium '85

    • 1st Edition
    • Volume 122
    • The Paris Logic The Paris Logic Group
    • English
    The bulk of this volume consists of invited addresses presented at the Colloquium. These contributions report on recent or ongoing research in some of the mainstream areas of mathematical logic: model theory, both pure and in its applications (to group theory and real algebraic geometry); and proof theory, applied to set theory and diophantine equations.The major novel aspect of the book is the important place accorded to the connections of mathematical logic with the neighboring disciplines: mathematical foundations of computer science, and philosophy of mathematics.
  • Decompositions of Manifolds

    • 1st Edition
    • Volume 124
    • English
  • Real-variable Methods in Harmonic Analysis

    • 1st Edition
    • Volume 123
    • English