Skip to main content

Books in Materials science

The Materials Science portfolio includes titles covering core knowledge and new research and applications across the field: nanotechnology and nanomaterials; polymers and plastics; textiles; composites and ceramics; electronic, magnetic, and optical materials; metals and alloys; biomaterials; surface and film science and coating technologies; materials chemistry, and more. In-depth coverage, innovative state-of-the-art approaches, and real-world application examples provide valuable, actionable insights for researchers, students, and the corporate sector. Elsevier's Materials Science portfolio places special attention on areas of current and emerging interest such as additive manufacturing / 3D printing, graphene and 2D materials, smart materials, biomimetics... The content in Elsevier's Materials Science titles program addresses core challenges facing science and society: sustainable energy technologies, the circular economy, health and human welfare.

  • Artificial Protein and Peptide Nanofibers

    Design, Fabrication, Characterization, and Applications
    • 1st Edition
    • Gang Wei + 1 more
    • English
    Artificial Protein and Peptide Nanofibers: Design, Fabrication, Characterization, and Applications provides comprehensive knowledge of the preparation, modification and applications of protein and peptide nanofibers. The book reviews the synthesis and strategies necessary to create protein and peptide nanofibers, such as self-assembly (including supramolecular assembly), electrospinning, template synthesis, and enzymatic synthesis. Then, the key chemical modification and molecular design methods are highlighted that can be utilized to improve the bio-functions of these synthetic fibers. Finally, fabrication methods for key applications, such as sensing, drug delivery, imaging, tissue engineering and electronic devices are reviewed. This book will be an ideal resource for those working in materials science, polymer science, chemical engineering, nanotechnology and biomedicine.
  • Dental Implants

    Materials, Coatings, Surface Modifications and Interfaces with Oral Tissues
    • 1st Edition
    • Muhammad Zafar + 1 more
    • English
    Dental Implants: Materials, Coatings, Surface Modifications and Interfaces with Oral Tissues provides readers with information on past and contemporary advances in the design and modification of dental implants to enhance osseointegration and biocompatibility. The book begins with a look at the current status of dental implants, materials and fabrication methods. Chapters then cover surface modification techniques and a variety of inorganic, organic and biological coatings. Final sections cover tissue-implant interfaces. Written by a multidisciplinary team of materials scientists, dental clinicians and implantologists, this book is an essential reference for materials scientists, dental practitioners and researchers and students in academia.
  • Comprehensive Nuclear Materials

    • 2nd Edition
    • Rudy Konings + 1 more
    • English
    Materials in a nuclear environment are exposed to extreme conditions of radiation, temperature and/or corrosion, and in many cases the combination of these makes the material behavior very different from conventional materials. This is evident for the four major technological challenges the nuclear technology domain is facing currently: (i) long-term operation of existing Generation II nuclear power plants, (ii) the design of the next generation reactors (Generation IV), (iii) the construction of the ITER fusion reactor in Cadarache (France), (iv) and the intermediate and final disposal of nuclear waste. In order to address these challenges, engineers and designers need to know the properties of a wide variety of materials under these conditions and to understand the underlying processes affecting changes in their behavior, in order to assess their performance and to determine the limits of operation. Comprehensive Nuclear Materials, Second Edition, Seven Volume Set provides broad ranging, validated summaries of all the major topics in the field of nuclear material research for fission as well as fusion reactor systems. Attention is given to the fundamental scientific aspects of nuclear materials: fuel and structural materials for fission reactors, waste materials, and materials for fusion reactors. The articles are written at a level that allows undergraduate students to understand the material, while providing active researchers with a ready reference resource of information. Most of the chapters from the first Edition have been revised and updated and a significant number of new topics are covered in completely new material. During the ten years between the two editions, the challenge for applications of nuclear materials has been significantly impacted by world events, public awareness, and technological innovation. Materials play a key role as enablers of new technologies, and we trust that this new edition of Comprehensive Nuclear Materials has captured the key recent developments.
  • Structures Strengthened with Bonded Composites

    • 1st Edition
    • Zhishen Wu + 2 more
    • English
    Structures Strengthened with Bonded Composites presents a comprehensive resource on the strengthening of concrete, reinforced and prestressed concrete, masonry, steel and other composite structures using externally-bonded FRP composites. The book emphasizes a systematic and fundamental investigation on bonding and debonding behavior of the FRP-concrete interface and structural performances of FRP-strengthened structures with a combination of experimental, theoretical and numerical studies. This book will appeal to all those concerned with strengthening and retrofitting of existing structures from the effect of additional anticipated loads in the civil sector.
  • Nanotechnology and Photocatalysis for Environmental Applications

    • 1st Edition
    • Muhammad Bilal Tahir + 2 more
    • English
    Nanotechnology and Photocatalysis for Environmental Applications focuses on nanostructured control, synthesis methods, activity enhancement strategies, environmental applications, and perspectives of semiconductor-based nanostructures. The book offers future guidelines for designing new semiconductor-based photocatalysts, with low cost and high efficiency, for a range of products aimed at environmental protection. The book covers the fundamentals of nanotechnology, the synthesis of nanotechnology, and the use of metal oxide, metal sulfide, and carbon-based nanomaterials in photocatalysis. The book also discusses the major challenges of using photocatalytic nanomaterials on a broad scale. The book then explores how photocatalytic nanomaterials and nanocomposites are being used for sustainable development applications, including environmental protection, pharmaceuticals, and air purification. The final chapter considers the recent advances in the field and outlines future perspectives on the technology. This is an important reference for materials scientists, chemical engineers, energy scientists, and anyone looking to understand more about the photocatalytic potential of nanomaterials, and their possible environmental applications.
  • Self-Healing Polymer-Based Systems

    • 1st Edition
    • Sabu Thomas + 1 more
    • English
    Self-Healing Polymer-Based Systems presents all aspects of self-healing polymeric materials, offering detailed information on fundamentals, preparation methods, technology, and applications, and drawing on the latest state-of-the-art research. The book begins by introducing self-healing polymeric systems, with a thorough explanation of underlying concepts, challenges, mechanisms, kinetic and thermodynamics, and types of chemistry involved. The second part of the book studies the main categories of self-healing polymeric material, examining elastomer-based, thermoplastic-based, and thermoset-based materials in turn. This is followed by a series of chapters that examine the very latest advances, including nanoparticles, coatings, shape memory, self-healing biomaterials, ionomers, supramolecular polymers, photoinduced and thermally induced self-healing, healing efficiency, life cycle analysis, and characterization. Finally, novel applications are presented and explained. This book serves as an essential resource for academic researchers, scientists, and graduate students in the areas of polymer properties, self-healing materials, polymer science, polymer chemistry, and materials science. In industry, this book contains highly valuable information for R&D professionals, designers, and engineers, who are looking to incorporate self-healing properties in their materials, products, or components.
  • The Fundamentals and Applications of Light-Emitting Diodes

    The Revolution in the Lighting Industry
    • 1st Edition
    • Govind B. Nair + 1 more
    • English
    The Fundamentals and Applications of Light-Emitting Diodes: The Revolution in the Lighting Industry examines the evolution of LEDs, including a review of the luminescence process and background on solid state lighting. The book emphasizes phosphor-converted LEDs that are based on inorganic phosphors but explores different types of LEDs based on inorganic, organic, quantum dots, perovskite-structure... materials, and biomaterials. A detailed description is included about the diverse applications of LEDs in fields such as lighting, displays, horticulture, biomedicine, and digital communication, as well as challenges that must be solved before using LEDs in commercial applications. Traditional light sources are fast being replaced by light-emitting diodes (LEDs). The fourth generation of lighting is completely dominated by LED luminaires. Apart from lighting, LEDs have extended their hold on other fields, such as digital communications, horticulture, medicine, space research, art and culture, display devices, and entertainment. The technological promises offered by LEDs have elevated them as front-runners in the lighting industry.
  • Nanocomposite Membranes for Gas Separation

    • 1st Edition
    • Pei Sean Goh + 1 more
    • English
    The development of a new class of nanocomposite membranes has served as one of the most prominent strategies to address the intrinsic limitations of conventionally used polymeric and inorganic membranes. Nanocomposite membranes consist of nanosized inorganic nanomaterials that are incorporated into the structure of continuous polymer matrices. Owing to the exceptional properties exhibited by the nanomaterials, the resultant nanocomposite membranes demonstrate higher selectivity and permeability that surpass the Robeson upper boundary limit. Nanocomposite Membranes for Gas Separation provides a comprehensive review of the advances made in the development and application of gas separation nanocomposite membranes. In particular, the book covers the focuses on the fabrication, modification, characterization and applications of nanocomposite membranes for gas separation. It is an important reference source both for materials scientists, environmental engineers and chemical engineers who are looking to understand how nanocomposite membranes are being used to create better techniques for gas separation.
  • Nano-Optics

    Fundamentals, Experimental Methods, and Applications
    • 1st Edition
    • Sabu Thomas + 4 more
    • English
    Nano-Optics: Fundamentals, Experimental Methods, and Applications offers insights into the fundamentals and industrial applications of nanoscale light-emitting materials and their composites. This book serves as a reference, offering an overview of existing research, with a particular focus on industrial applications. Nano-optics is the branch of nanoscience and nanotechnology that deals with interaction of light with nanoscale objects. This book explores the materials, structure, manufacturing techniques, and industrial applications of nano-optics. The applications discussed include healthcare, communication, astronomy, and satellites.
  • Nanoporous Materials for Molecule Separation and Conversion

    • 1st Edition
    • Jian Liu + 1 more
    • English
    Nanoporous Materials for Molecule Separation and Conversion cover the topic with sections on nanoporous material synthesis and characterization, nanoporous materials for molecule separation, and nanoporous materials for energy storage and renewable energy. Typical nanoporous materials including carbon, zeolite, silica and metal-organic frameworks and their applications in molecule separation and energy related applications are covered. In addition, the fundamentals of molecule adsorption and molecule transport in nanoporous materials are also included, providing readers with a stronger understanding of the principles and topics covered. This is an important reference for anyone exploring nanoporous materials, including researchers and postgraduate students in materials science and chemical engineering. In addition, it is ideal for industry professionals working on a wide range of applications for nanoporous materials.