Bio-Inspired Computation and Applications in Image Processing summarizes the latest developments in bio-inspired computation in image processing, focusing on nature-inspired algorithms that are linked with deep learning, such as ant colony optimization, particle swarm optimization, and bat and firefly algorithms that have recently emerged in the field. In addition to documenting state-of-the-art developments, this book also discusses future research trends in bio-inspired computation, helping researchers establish new research avenues to pursue.
This new volume, number 123, of Methods in Cell Biology looks at methods for quantitative imaging in cell biology. It covers both theoretical and practical aspects of using optical fluorescence microscopy and image analysis techniques for quantitative applications. The introductory chapters cover fundamental concepts and techniques important for obtaining accurate and precise quantitative data from imaging systems. These chapters address how choice of microscope, fluorophores, and digital detector impact the quality of quantitative data, and include step-by-step protocols for capturing and analyzing quantitative images. Common quantitative applications, including co-localization, ratiometric imaging, and counting molecules, are covered in detail. Practical chapters cover topics critical to getting the most out of your imaging system, from microscope maintenance to creating standardized samples for measuring resolution. Later chapters cover recent advances in quantitative imaging techniques, including super-resolution and light sheet microscopy. With cutting-edge material, this comprehensive collection is intended to guide researchers for years to come.
Computed Electron Micrographs and Defect Identification illustrates a technique for identifying defects in crystalline solids by the comparison of their images, which are produced in the electron microscope, with corresponding theoretical images. This book discusses the diffraction of electrons by a crystal; the two-beam dynamical equations; the absorption parameters; the deviation of the crystal from the Bragg reflecting position; the extinction distance; the displacement vector; and the foil normal. Chapter three presents the experimental techniques for determination of beam direction, defect line normal, foil normal, foil thickness, and extinction distance. Chapters four to seven explore ONEDIS and TWODIS and their principles. Chapters eight and nine focus on the application and limitations of the technique, while the last chapter explores the different computer programs related to the technique. Post-graduate students, as well as researchers using transmission electron microscopy for studying defects in crystalline solids, will find this book invaluable.
High Dynamic Range Imaging, Second Edition, is an essential resource for anyone working with images, whether it is for computer graphics, film, video, photography, or lighting design. It describes HDRI technology in its entirety and covers a wide-range of topics, from capture devices to tone reproduction and image-based lighting. The techniques described enable students to produce images that have a dynamic range much closer to that found in the real world, leading to an unparalleled visual experience. This revised edition includes new chapters on High Dynamic Range Video Encoding, High Dynamic Range Image Encoding, and High Dynamic Range Display Devices. All existing chapters have been updated to reflect the current state-of-the-art technology. As both an introduction to the field and an authoritative technical reference, this book is essential for anyone working with images, whether in computer graphics, film, video, photography, or lighting design.
Light and Skin Interactions immerses you in one of the most fascinating application areas of computer graphics: appearance simulation. The book first illuminates the fundamental biophysical processes that affect skin appearance, and reviews seminal related works aimed at applications in life and health sciences. It then examines four exemplary modeling approaches as well as definitive algorithms that can be used to generate realistic images depicting skin appearance. Despite its wide scope of simulation approaches, the book’s content is presented in a concise manner, focusing on relevant practical aspects. What’s more, these approaches can be successfully applied to a wide range of additional materials, such as eye tissue, hair, and water.
This books is aimed at publishers, librarians, printers, communications professionals and anyone who has an interest in the past, present and future of the book. It chronicles the early beginnings of printing technology and book publishing in the context of the book as a major cultural agent. The book discusses the print medium in light of challenges from non-paper communications technologies and how the book publishing industry can face these challenges in order to remain an important player in the extant multi-media market place by exploiting the technical and creative possibilities afforded by newer digital printing technologies.
Digital image processing, an integral part of microscopy, is increasingly important to the fields of medicine and scientific research. This book provides a unique one-stop reference on the theory, technique, and applications of this technology. Written by leading experts in the field, this book presents a unique practical perspective of state-of-the-art microscope image processing and the development of specialized algorithms. It contains in-depth analysis of methods coupled with the results of specific real-world experiments. Microscope Image Processing covers image digitization and display, object measurement and classification, autofocusing, and structured illumination. Key Features: Detailed descriptions of many leading-edge methods and algorithms In-depth analysis of the method and experimental results, taken from real-life examples Emphasis on computational and algorithmic aspects of microscope image processing Advanced material on geometric, morphological, and wavelet image processing, fluorescence, three-dimensional and time-lapse microscopy, microscope image enhancement, MultiSpectral imaging, and image data management This book is of interest to all scientists, engineers, clinicians, post-graduate fellows, and graduate students working in the fields of biology, medicine, chemistry, pharmacology, and other related fields. Anyone who uses microscopes in their work and needs to understand the methodologies and capabilities of the latest digital image processing techniques will find this book invaluable.
Digital audio, video, images, and documents are flying through cyberspace to their respective owners. Unfortunately, along the way, individuals may choose to intervene and take this content for themselves. Digital watermarking and steganography technology greatly reduces the instances of this by limiting or eliminating the ability of third parties to decipher the content that he has taken. The many techiniques of digital watermarking (embedding a code) and steganography (hiding information) continue to evolve as applications that necessitate them do the same. The authors of this second edition provide an update on the framework for applying these techniques that they provided researchers and professionals in the first well-received edition. Steganography and steganalysis (the art of detecting hidden information) have been added to a robust treatment of digital watermarking, as many in each field research and deal with the other. New material includes watermarking with side information, QIM, and dirty-paper codes. The revision and inclusion of new material by these influential authors has created a must-own book for anyone in this profession.
This updated second edition of the popular methods book "Video Microscopy" shows how to track dynamic changes in the structure or architecture of living cells and in reconstituted preparations using video and digital imaging microscopy. Contains 10 new chapters addressing developments over the last several years. Basic information, principles, applications, and equipment are covered in the first half of the volume and more spcialized video microscopy techniques are covered in the second half.
The explosion of computer use and internet communication has placed new emphasis on the ability to store, retrieve and search for all types of images, both still photo and video images. The success and the future of visual information retrieval depends on the cutting edge research and applications explored in this book. It combines the expertise from both computer vision and database research.Unlike text retrieval and text/numeric databases the challenges of image databases are enormous. How do you use "data mining" to search for an image if you do not have "key words" to search? Exploratory Image Databases introduces the idea that it is possible to solve this problem by merging database systems into a single search and browse activity called "exploration."Exploratory Image Databases is one of the first single-author books that unifies the critical emerging topic of image databases. A new approach to image databases, the work is divided into four central parts: introduction to the problems that image database research must solve; computer vision and information retrieval techniques; image database issues; and interface and engines for visual searches.Example: Imagine the difficulty of building and using a database for "face recognition," where an image of a face is used. In order to effectively use the image a huge number of characteristics would need to be entered in the database. The goal of future image databases is to use hardware and software to recognize and categorize images without typing in characteristics.