Resilient Cooperative Control and Optimization of Multi-Agent Systems addresses various resilient cooperative control and optimization problems of multi-agent systems that are vulnerable to physical failure and cyber attacks and consist of multiple decision-making agents that interact in a shared environment to achieve common or conflicting goals. Critical infrastructures, such as smart grids, wireless sensor network, multi-robot system, etc., are typical examples of multi-agent systems that consist of the large-scale physical processes which are monitored and controlled over a set of communication networks and computers.
Signals and Systems Using MATLAB, Fourth Edition features a pedagogically rich and accessible approach to what can commonly be a mathematically dry subject. Historical notes and common mistakes combined with applications in controls, communications, and signal processing help students understand and appreciate the usefulness of the techniques described in the text. This new edition features more worked examples and a variety of new end-of-chapter problems, suggestions for labs, and more explanation of MATLAB code.
Modeling and Nonlinear Robust Control of Delta-Like Parallel Kinematic Manipulators deals with the modeling and control of parallel robots. The book's content will benefit students, researchers and engineers in robotics by providing a simplified methodology to obtain the dynamic model of parallel robots with a delta-type architecture. Moreover, this methodology is compatible with the real-time implementation of model-based and robust control schemes. And, it can easily extend the proposed robust control solutions to other robotic architectures.
Vehicle Collision Dynamics provides a unified framework and timely collection of up-to-date results on front crash, side crash and car to car crashes. The book is ideal as a reference, with an approach that's simple, clear, and easy to comprehend. As the mathematical and software-based modelling and analysis of vehicle crash scenarios have not been systematically investigated, this is an ideal source for further study. Numerous academic and industry studies have analyzed vehicle safety during physical crash scenarios, thus material responses during crashes serve as one of the most important performance indices for mechanical design problems. In addition to mathematical methodologies, this book provides thorough coverage of computer simulations, software-based modeling, and an analysis of methods capable of providing more flexibility.
IEC 61850-Based Smart Substations: Principles, Testing, Operation and Maintenance systematically presents principles, testing approaches, and the operation and maintenance technologies of such substations from the perspective of real-world application. The book consists of chapters that cover a review of IEC 61850 based smart substations, substation configuration technology, principles and testing technologies for the smart substation, process bus, substation level, time setting and synchronization, and cybersecurity. It gives detailed information on testing processes and approaches, operation and maintenance technologies, and insights gained through practical experience. As IEC 61850 based smart substations have played a significant role in smart grids, realizing information sharing and device interoperation, this book provides a timely resource on the topics at hand.
Signals and Systems Using MATLAB, Third Edition, features a pedagogically rich and accessible approach to what can commonly be a mathematically dry subject. Historical notes and common mistakes combined with applications in controls, communications and signal processing help students understand and appreciate the usefulness of the techniques described in the text. This new edition features more end-of-chapter problems, new content on two-dimensional signal processing, and discussions on the state-of-the-art in signal processing.
Mathematical Techniques of Fractional Order Systems illustrates advances in linear and nonlinear fractional-order systems relating to many interdisciplinary applications, including biomedical, control, circuits, electromagnetics and security. The book covers the mathematical background and literature survey of fractional-order calculus and generalized fractional-order circuit theorems from different perspectives in design, analysis and realizations, nonlinear fractional-order circuits and systems, the fractional-order memristive circuits and systems in design, analysis, emulators, simulation and experimental results. It is primarily meant for researchers from academia and industry, and for those working in areas such as control engineering, electrical engineering, computer science and information technology. This book is ideal for researchers working in the area of both continuous-time and discrete-time dynamics and chaotic systems.
Control of Power Electronic Converters, Volume Two gives the theory behind power electronic converter control and discusses the operation, modelling and control of basic converters. The main components of power electronics systems that produce a desired effect (energy conversion, robot motion, etc.) by controlling system variables (voltages and currents) are thoroughly covered. Both small (mobile phones, computer power supplies) and very large systems (trains, wind turbines, high voltage power lines) and their power ranges, from the Watt to the Gigawatt, are presented and explored. Users will find a focused resource on how to apply innovative control techniques for power converters and drives.
Advanced Control Design with Application to Electromechanical Systems represents the continuing effort in the pursuit of analytic theory and rigorous design for robust control methods. The book provides an overview of the feedback control systems and their associated definitions, with discussions on finite dimension vector spaces, mappings and convex analysis. In addition, a comprehensive treatment of continuous control system design is presented, along with an introduction to control design topics pertaining to discrete-time systems. Other sections introduces linear H1 and H2 theory, dissipativity analysis and synthesis, and a wide spectrum of models pertaining to electromechanical systems. Finally, the book examines the theory and mathematical analysis of multiagent systems. Researchers on robust control theory and electromechanical systems and graduate students working on robust control will benefit greatly from this book.
Smart Sensors and MEMS: Intelligent Devices and Microsystems for Industrial Applications, Second Edition highlights new, important developments in the field, including the latest on magnetic sensors, temperature sensors and microreaction chambers. The book outlines the industrial applications for smart sensors, covering direct interface circuits for sensors, capacitive sensors for displacement measurement in the sub-nanometer range, integrated inductive displacement sensors for harsh industrial environments, advanced silicon radiation detectors in the vacuum ultraviolet (VUV) and extreme ultraviolet (EUV) spectral range, among other topics. New sections include discussions on magnetic and temperature sensors and the industrial applications of smart micro-electro-mechanical systems (MEMS). The book is an invaluable reference for academics, materials scientists and electrical engineers working in the microelectronics, sensors and micromechanics industry. In addition, engineers looking for industrial sensing, monitoring and automation solutions will find this a comprehensive source of information.