This book teaches the skills and knowledge required by today’s RF and microwave engineer in a concise, structured and systematic way. Reflecting modern developments in the field, this book focuses on active circuit design covering the latest devices and design techniques. From electromagnetic and transmission line theory and S-parameters through to amplifier and oscillator design, techniques for low noise and broadband design; This book focuses on analysis and design including up to date material on MMIC design techniques. With this book you will: Learn the basics of RF and microwave circuit analysis and design, with an emphasis on active circuits, and become familiar with the operating principles of the most common active system building blocks such as amplifiers, oscillators and mixers Be able to design transistor-based amplifiers, oscillators and mixers by means of basic design methodologies Be able to apply established graphical design tools, such as the Smith chart and feedback mappings, to the design RF and microwave active circuits Acquire a set of basic design skills and useful tools that can be employed without recourse to complex computer aided design
Basic Electric Circuits, Second Edition details the underlying principle that governs the electric-circuit theory. The title provides problems and worked examples that supplement the discussion of applications of the ideas. The text first deals with conducting and insulating materials, and then proceeds to talking about semiconductor junction devices. Next, the selection covers resistance, capacitance, and inductance, along with different kinds of circuitry. The title also discusses graphical methods, symbolic method of analysis, and elementary transmission-line analysis. The book will be of great use to students of electrical engineering. The text will also serve as a reference material for professional engineers.
Both mining and electrical engineers need to bear in mind the following specific requirements of electrical applications in mining. 1) Economy of electrical plant and equipment in relation to the cost price of the extracted mineral ores, governed by the specific exploitation conditions, 2) Reliability of electrical plant and equipment for extractive operations, operational efficiency, and plant and personnel safety. 3) Special safeguards to counteract the additional hazards posed by the use of electric power, and by electrical phenomena in general. The book has been written along these lines, dealing with those topics which highlight the aspects of electrical engineering of relevance for mining engineers and aspects of mining operations that electrical engineers need, to meet the above-mentioned basic requirements governing the introduction and use of electrical plants and systems in mines.This book is intended as a text book and will be of use to students, and colleges as well as to mining and electrical engineers.
This book will show you how to approach the design covering everything from the circuit specification to the final design acceptance, including what support you can expect, sizing, timing analysis, power and packaging, various simulations, design verification, and design submission.
Precharge logic is used by a variety of industries in applications where processor speed is the primary goal, such as VLSI (very large systems integration) applications. Also called dynamic logic, this type of design uses a clock to synchronize instructions in circuits. This comprehensive book covers the challenges faced by designers when using this logic style, including logic basics, timing, noise considerations, alternative topologies and more. In addition advanced topics such as skew tolerant design are covered in some detail. Overall this is a comprehensive view of precharge logic, which should be useful to graduate students and designers in the field alike. It might also be considered as a supplemental title for courses covering VLSI.
The Circuit Designers Companion, Third Edition, provides the essential information that every circuit designer needs to produce a working circuit, as well as information on how to make a design that is robust, tolerant to noise and temperature, and able to operate in the system for which it is intended. It looks at best practices, design guidelines, and engineering knowledge gained from years of experience, and includes practical, real-world considerations for components and printed circuit boards (PCBs) as well as their manufacturability, reliability, and cost. Organized into nine chapters, the book begins with a discussion of grounding and wiring of electronic or electrical circuits, when to consider grounding, and the main factors that must be taken into account when designing a new PCB. It then introduces the reader to passive components such as resistors and capacitors, potentiometers and inductors, and crystals and resonators, as well as active components like diodes, thyristors and triacs, bipolar transistors, junction field-effect transistors, metal-oxide-semiconductor field-effect transistors (MOSFETs), and insulated gate bipolar transistors (IGBTs). It also describes high-speed digital circuit design and analog integrated circuits, including operational amplifiers and comparators, and power supplies such as batteries. The final two chapters focus on electromagnetic compatibility and the latest advances in electronics, along with safety considerations in the design of electronic equipment. This book is an invaluable resource for circuit designers and practicing electronics engineers, electronic engineering students, and professors.
Analog circuit and system design today is more essential than ever before. With the growth of digital systems, wireless communications, complex industrial and automotive systems, designers are challenged to develop sophisticated analog solutions. This comprehensive source book of circuit design solutions will aid systems designers with elegant and practical design techniques that focus on common circuit design challenges. The book’s in-depth application examples provide insight into circuit design and application solutions that you can apply in today’s demanding designs.
The Newnes Know It All Series takes the best of what our authors have written to create hard-working desk references that will be an engineer's first port of call for key information, design techniques and rules of thumb. Guaranteed not to gather dust on a shelf!Electronics Engineers need to master a wide area of topics to excel. The Circuit Design Know It All covers every angle including semiconductors, IC Design and Fabrication, Computer-Aided Design, as well as Programmable Logic Design.
Visit the authors' companion site! http://www.electronicsystemlevel.com/ - Includes interactive forum with the authors!Electronic System Level (ESL) design has mainstreamed – it is now an established approach at most of the world’s leading system-on-chip (SoC) design companies and is being used increasingly in system design. From its genesis as an algorithm modeling methodology with ‘no links to implementation’, ESL is evolving into a set of complementary methodologies that enable embedded system design, verification and debug through to the hardware and software implementation of custom SoC, system-on-FPGA, system-on-board, and entire multi-board systems. This book arises from experience the authors have gained from years of work as industry practitioners in the Electronic System Level design area; they have seen "SLD" or "ESL" go through many stages and false starts, and have observed that the shift in design methodologies to ESL is finally occurring. This is partly because of ESL technologies themselves are stabilizing on a useful set of languages being standardized (SystemC is the most notable), and use models are being identified that are beginning to get real adoption. ESL DESIGN & VERIFICATION offers a true prescriptive guide to ESL that reviews its past and outlines the best practices of today.Table of ContentsCHAPTER 1: WHAT IS ESL? CHAPTER 2: TAXONOMY AND DEFINITIONS FOR THE ELECTRONIC SYSTEM LEVEL CHAPTER 3: EVOLUTION OF ESL DEVELOPMENT CHAPTER 4: WHAT ARE THE ENABLERS OF ESL? CHAPTER 5: ESL FLOW CHAPTER 6: SPECIFICATIONS AND MODELING CHAPTER 7: PRE-PARTITIONING ANALYSIS CHAPTER 8: PARTITIONING CHAPTER 9: POST-PARTITIONING ANALYSIS AND DEBUG CHAPTER 10: POST-PARTITIONING VERIFICATION CHAPTER 11: HARDWARE IMPLEMENTATION CHAPTER 12: SOFTWARE IMPLEMENTATION CHAPTER 13: USE OF ESL FOR IMPLEMENTATION VERIFICATION CHAPTER 14: RESEARCH, EMERGING AND FUTURE PROSPECTS APPENDIX: LIST OF ACRONYMS