4 zettabytes (4 billion terabytes) of data generated in 2013, 44 zettabytes predicted for 2020 and 185 zettabytes for 2025. These figures are staggering and perfectly illustrate this new era of data deluge. Data has become a major economic and social challenge. The speed of processing of these data is the weakest link in a computer system: the storage system. It is therefore crucial to optimize this operation. During the last decade, storage systems have experienced a major revolution: the advent of flash memory. Flash Memory Integration: Performance and Energy Issues contributes to a better understanding of these revolutions. The authors offer us an insight into the integration of flash memory in computer systems, their behavior in performance and in power consumption compared to traditional storage systems. The book also presents, in their entirety, various methods for measuring the performance and energy consumption of storage systems for embedded as well as desktop/server computer systems. We are invited on a journey to the memories of the future.
Is your memory hierarchy stopping your microprocessor from performing at the high level it should be? Memory Systems: Cache, DRAM, Disk shows you how to resolve this problem. The book tells you everything you need to know about the logical design and operation, physical design and operation, performance characteristics and resulting design trade-offs, and the energy consumption of modern memory hierarchies. You learn how to to tackle the challenging optimization problems that result from the side-effects that can appear at any point in the entire hierarchy.As a result you will be able to design and emulate the entire memory hierarchy.
This book provides an in-depth exposition of spin-stand microscopy of hard disk data which is a new technique recently developed and extensively tested by the authors of the book. Spin-stand microscopy is the first magnetic imaging technique where imaging is performed ex-situ on a rotating disk mounted on a spin-stand. This technique is one of the fastest scanning-based microscopy techniques. It is non-invasive and has nano-scale resolution. For these reasons, it provides unique capabilities for the visualization of magnetization patterns recorded on hard disks. This book is self-contained and it covers in sufficient details the basic facts of magnetic data storage technology, the principles and theory of spin-stand microscopy, its experimental implementations, as well as its applications in hard disk diagnostics, imaging of overwritten patterns, computer forensics of hard disk files, and data-dependent magnetic thermal relaxations of recorded magnetization patterns. This book will be a valuable reference for the magnetic data storage community, magnetic microscopy professionals as well as engineers and scientists involved in computer data forensics, commercial data recovery, and the design of archival data storage systems.
The Firmware Handbook provides a comprehensive reference for firmware developers looking to increase their skills and productivity. It addresses each critical step of the development process in detail, including how to optimize hardware design for better firmware. Topics covered include real-time issues, interrupts and ISRs, memory management (including Flash memory), handling both digital and analog peripherals, communications interfacing, math subroutines, error handling, design tools, and troubleshooting and debugging. This book is not for the beginner, but rather is an in-depth, comprehensive one-volume reference that addresses all the major issues in firmware design and development, including the pertinent hardware issues.
The Second Edition of The Cache Memory Book introduces systems designers to the concepts behind cache design. The book teaches the basic cache concepts and more exotic techniques. It leads readers through someof the most intricate protocols used in complex multiprocessor caches. Written in an accessible, informal style, this text demystifies cache memory design by translating cache concepts and jargon into practical methodologies and real-life examples. It also provides adequate detail to serve as a reference book for ongoing work in cache memory design.The Second Edition includes an updated and expanded glossary of cache memory terms and buzzwords. The book provides new real world applications of cache memory design and a new chapter on cache"tricks".
An authoritative book for hardware and software designers. Caches are by far the simplest and most effective mechanism for improving computer performance. This innovative book exposes the characteristics of performance-optimal single and multi-level cache hierarchies by approaching the cache design process through the novel perspective of minimizing execution times. It presents useful data on the relative performance of a wide spectrum of machines and offers empirical and analytical evaluations of the underlying phenomena. This book will help computer professionals appreciate the impact of caches and enable designers to maximize performance given particular implementation constraints.
Short-wavelength magnetic recording presents a series of practical solutions to a wide range of problems in the field of magnetic recording. It features many new and original results, all derived from fundamental principles as a result of up-to-date research.A special section is devoted to the playback process, including the calculations of head efficiency and head impedance, derived from new theorems.Features include:A simple and fast method for measuring efficiency; a simple method for the accurate separation of the read and write behaviour of magnetic heads; a new concept - the bandpass head.Other types of head covered include: the metal-in-gap head; the amarphous head; the thin-film head; the magneto-resistive head; and probe-type heads for perpendicular recording.The introduction includes an invaluable historical summary of magnetic recording, and the book also features an extensive subject index, complete author index, and a glossary of symbols."The scope and mathematical rigour of this book can only be compared with W.K. Westmijze's 1953 landmark "Studies in Magnetic Recording""The easy writing style (renders) the mathematical treatments readily understandable as physical propositions... A careful study of this book cannot help but provide the reader with the most profound insights into the limits of short-wavelength recording." John C. Mallinson, Center for Magnetic Recording Research, University of California, San Diego, USA.