Creativity in Computing and DataFlow Supercomputing, the latest release in the Advances in Computers series published since 1960, presents detailed coverage of innovations in computer hardware, software, theory, design, and applications. In addition, it provides contributors with a medium in which they can explore topics in greater depth and breadth than journal articles typically allow. As a result, many articles have become standard references that continue to be of significant, lasting value in this rapidly expanding field.
Advances in Computers, the latest volume in the series published since 1960, presents detailed coverage of innovations in computer hardware, software, theory, design, and applications. In addition, it provides contributors with a medium in which they can explore their subjects in greater depth and breadth than journal articles usually allow. As a result, many articles have become standard references that continue to be of significant, lasting value in this rapidly expanding field.
Advances in Computers, an ongoing series since 1960, presents detailed coverage of innovations in computer hardware, software, theory, design, and applications. It has also provided contributors with a medium in which they can explore their subjects in greater depth and breadth than journal articles usually allow. As a result, many articles have become standard references and continue to be of significant, lasting value in this rapidly expanding field.
Intel Xeon Phi Processor High Performance Programming is an all-in-one source of information for programming the Second-Generation Intel Xeon Phi product family also called Knights Landing. The authors provide detailed and timely Knights Landingspecific details, programming advice, and real-world examples. The authors distill their years of Xeon Phi programming experience coupled with insights from many expert customers — Intel Field Engineers, Application Engineers, and Technical Consulting Engineers — to create this authoritative book on theessentials of programming for Intel Xeon Phi products. Intel® Xeon Phi™ Processor High-Performance Programming is useful even before you ever program a system with an Intel Xeon Phi processor. To help ensure that your applications run at maximum efficiency, the authors emphasize key techniques for programming any modern parallel computing system whether based on Intel Xeon processors, Intel Xeon Phi processors, or other high-performance microprocessors. Applying these techniques will generally increase your program performance on any system and prepareyou better for Intel Xeon Phi processors.
Advances in Computers carries on a tradition of excellence, presenting detailed coverage of innovations in computer hardware, software, theory, design, and applications. The book provides contributors with a medium in which they can explore their subjects in greater depth and breadth than journal articles typically allow. The articles included in this book will become standard references, with lasting value in this rapidly expanding field.
Since its first volume in 1960, Advances in Computers has presented detailed coverage of innovations in computer hardware, software, theory, design, and applications. It has also provided contributors with a medium in which they can explore their subjects in greater depth and breadth than journal articles usually allow. As a result, many articles have become standard references that continue to be of significant, lasting value in this rapidly expanding field.
The contributions of a diverse selection of international hardware and software specialists are assimilated in this book's exploration of the development of massively parallel processing (MPP). The emphasis is placed on industrial applications and collaboration with users and suppliers from within the industrial community consolidates the scope of the publication.From a practical point of view, massively parallel data processing is a vital step to further innovation in all areas where large amounts of data must be processed in parallel or in a distributed manner, e.g. fluid dynamics, meteorology, seismics, molecular engineering, image processing, parallel data base processing. MPP technology can make the speed of computation higher and substantially reduce the computational costs. However, to achieve these features, the MPP software has to be developed further to create user-friendly programming systems and to become transparent for present-day computer software.Application of novel electro-optic components and devices is continuing and will be a key for much more general and powerful architectures. Vanishing of communication hardware limitations will result in the elimination of programming bottlenecks in parallel data processing. Standardization of the functional characteristics of a programming model of massively parallel computers will become established. Then efficient programming environments can be developed. The result will be a widespread use of massively parallel processing systems in many areas of application.
This is volume 72 of Advances in Computers, a series that began back in 1960 and is the oldest continuing series chronicling the ever-changing landscape of information technology. Each year three volumes are produced, which present approximately 20 chapters that describe the latest technology in the use of computers today. In this volume 72, we present the current status in the development of a new generation of high-performance computers. The computer today has become ubiquitous with millions of machines being sold (and discarded) annually. Powerful machines are produced for only a few hundred U.S. dollars, and one of the problems faced by vendors of these machines is that, due to the continuing adherence to Moore’s law, where the speed of such machines doubles about every 18 months, we typically have more than enough computer power for our needs for word processing, surfing the web, or playing video games. However, the same cannot be said for applications that require large powerful machines. Applications such as weather and climate prediction, fluid flow for designing new airplanes or automobiles, or nuclear plasma flow require as much computer power as we can provide, and even that is not enough. Today’s machines operate at the teraflop level (trillions of floating point operations per second) and this book describes research into the petaflop region (1,015 FLOPS). The six chapters provide an overview of current activities that will provide for the introduction of these machines in the years 2011 through 2015.
This book provides design methods for Digital Signal Processors and Application Specific Instruction set Processors, based on the author's extensive, industrial design experience. Top-down and bottom-up design methodologies are presented, providing valuable guidance for both students and practicing design engineers. Coverage includes design of internal-external data types, application specific instruction sets, micro architectures, including designs for datapath and control path, as well as memory sub systems. Integration and verification of a DSP-ASIP processor are discussed and reinforced with extensive examples.
The past few years have seen significant change in the landscape of high-end network processing. In response to the formidable challenges facing this emerging field, the editors of this series set out to survey the latest research and practices in the design, programming, and use of network processors. Through chapters on hardware, software, performance and modeling, Network Processor Design illustrates the potential for new NP applications, helping to lay a theoretical foundation for the architecture, evaluation, and programming of networking processors. Like Volume 2 of the series, Volume 3 further shifts the focus from achieving higher levels of packet processing performance to addressing other critical factors such as ease of programming, application developments, power, and performance prediction. In addition, Volume 3 emphasizes forward-looking, leading-edge research in the areas of architecture, tools and techniques, and applications such as high-speed intrusion detection and prevention system design, and the implementation of new interconnect standards.