Recent Trends in Biofilm Science and Technology helps researchers working on fundamental aspects of biofilm formation and control conduct biofilm studies and interpret results. The book provides a remarkable amount of knowledge on the processes that regulate biofilm formation, the methods used, monitoring characterization and mathematical modeling, the problems/advantages caused by their presence in the food industry, environment and medical fields, and the current and emergent strategies for their control. Research on biofilms has progressed rapidly in the last decade due to the fact that biofilms have required the development of new analytical tools and new collaborations between biologists, engineers and mathematicians.
Drug Safety in Developing Countries: Achievements and Challenges provides comprehensive information on drug safety issues in developing countries. Drug safety practice in developing countries varies substantially from country to country. This can lead to a rise in adverse reactions and a lack of reporting can exasperate the situation and lead to negative medical outcomes. This book documents the history and development of drug safety systems, pharmacovigilance centers and activities in developing countries, describing their current situation and achievements of drug safety practice. Further, using extensive case studies, the book addresses the challenges of drug safety in developing countries.
Patterning and Cell Type Specification in the Developing CNS and PNS, Second Edition, the latest release in the Comprehensive Developmental Neuroscience series, presents recent advances in genetic, molecular and cellular methods that have generated a massive increase in new information. The book provides a much-needed update to underscore the latest research in this rapidly evolving field, with new section editors discussing the technological advances that are enabling the pursuit of new research on brain development. This volume focuses on neural patterning and cell type specification in the developing central and peripheral nervous systems.
Release and Bioavailability of Nanoencapsulated Food Ingredients, volume five in the Nanoencapsulation in the Food Industry series, reviews different release mechanisms of nanoencapsulated food ingredients. The book discusses mathematical and intelligent modeling of the release of bioactive agents from nano-vehicles to better understand their release mechanisms, while also covering different approaches for studying the release profile of these ingredients (such as in-vitro and in-vivo assays). Authored by a team of global experts in the fields of nano and microencapsulation of food, nutraceutical and pharmaceutical ingredients, this title will be of great value to those engaged in various fields of nanoencapsulation.
Glucose Monitoring Devices: Measuring Blood Glucose to Manage and Control Diabetes presents the state-of-the-art regarding glucose monitoring devices and the clinical use of monitoring data for the improvement of diabetes management and control. Chapters cover the two most common approaches to glucose monitoring–self-monitoring blood glucose and continuous glucose monitoring–discussing their components, accuracy, the impact of use on quality of glycemic control as documented by landmark clinical trials, and mathematical approaches. Other sections cover how data obtained from these monitoring devices is deployed within diabetes management systems and new approaches to glucose monitoring. This book provides a comprehensive treatment on glucose monitoring devices not otherwise found in a single manuscript. Its comprehensive variety of topics makes it an excellent reference book for doctoral and postdoctoral students working in the field of diabetes technology, both in academia and industry.
Tantalizing Therapeutics in Bronchopulmonary Dysplasia is a concise reference that provides an overview of emerging concepts in the understanding of lung development and injury from a molecular and cellular point-of-view, including exciting pathways that are paving the way for new options to prevent or treat Bronchopulmonary Dysplasia (BPD). The book's chapters are written by experts who are at the forefront of BPD research. Coverage includes chapters on exosomes, stem cells and miRs, as well as a section on new discoveries in BPD research with translational potential. This is a must-have reference for researchers, physicians and trainees working on BPD, lung developmental biology, and more.
Microorganisms are a major part of the Earth’s biological diversity. Although a lot of research has been done on microbial diversity, most of it is fragmented. This book creates the need for a unified text to be published, full of information about microbial diversity from highly reputed and impactful sources. Recent Advancements in Microbial Diversity brings a comprehensive understanding of the recent advances in microbial diversity research focused on different bodily systems, such as the gut. Recent Advancements in Microbial Diversity also discusses how the application of advanced sequencing technologies is used to reveal previously unseen microbial diversity and show off its function.
Cellular Migration and Formation of Neuronal Connections, Second Edition, the latest release in the Comprehensive Developmental Neuroscience series, presents the latest information on the genetic, molecular and cellular mechanisms of neural development. This book provides a much-needed update that underscores the latest research in this rapidly evolving field, with new section editors discussing the technological advances that are enabling the pursuit of new research on brain development. This volume focuses on the formation of axons and dendrites and cellular migration.
Deep learning, a branch of Artificial Intelligence and machine learning, has led to new approaches to solving problems in a variety of domains including data science, data analytics and biomedical engineering. Deep Learning for Data Analytics: Foundations, Biomedical Applications and Challenges provides readers with a focused approach for the design and implementation of deep learning concepts using data analytics techniques in large scale environments. Deep learning algorithms are based on artificial neural network models to cascade multiple layers of nonlinear processing, which aids in feature extraction and learning in supervised and unsupervised ways, including classification and pattern analysis. Deep learning transforms data through a cascade of layers, helping systems analyze and process complex data sets. Deep learning algorithms extract high level complex data and process these complex sets to relatively simpler ideas formulated in the preceding level of the hierarchy. The authors of this book focus on suitable data analytics methods to solve complex real world problems such as medical image recognition, biomedical engineering, and object tracking using deep learning methodologies. The book provides a pragmatic direction for researchers who wish to analyze large volumes of data for business, engineering, and biomedical applications. Deep learning architectures including deep neural networks, recurrent neural networks, and deep belief networks can be used to help resolve problems in applications such as natural language processing, speech recognition, computer vision, bioinoformatics, audio recognition, drug design, and medical image analysis.
Chemical Tools for Imaging, Manipulating, and Tracking Biological Systems: Diverse Methods for Optical Imaging and Conjugation, Volume 639, the latest release in the Methods in Enzymology series, continues the legacy of this premier serial with quality chapters authored by leaders in the field. Chapters in this new release include Fluorogenic detection of protein aggregates in live cells using the AggTag method, Synthesis and Application of Ratiometric Probes for Hydrogen Peroxide Detection, Chemical Tools for Multicolor Protein FRET with Tryptophan, Fluorescing Isofunctional Ribonucleosides for Adenosine Deaminase Activity and Inhibition, Temporal profiling establishes a dynamic S-palmitoylation cycle, Solvation-guided design of fluorescent probes for discrimination of amyloids, and much more.