Correlative Light and Electron Microscopy III, Volume 140, a new volume in the Methods in Cell Biology series, continues the legacy of this premier serial with quality chapters authored by leaders in the field. Topics discussed in this new release include Millisecond time-resolved CLEM, Super resolution LM und SEM of high-pressure frozen C. elegans, Preservation fluorescence, super res CLEM, APEX in Tissue, Corrsight mit IBIDI flowthrough chamber, Correlative Light Atomic Force Electronic Microscopy (CLAFEM), Atmospheric EM CLEM, and High-precision correlation, amongst other topics. Chapters in this ongoing series deal with different approaches for analyzing the same specimen using more than one imaging technique. The strengths and application area of each is presented, with this volume exploring the aspects of sample preparation of diverse biological systems for different CLEM approaches.
cryoEM, a new volume in the Methods in Enzymology series, continues the legacy of this premier serial with quality chapters authored by leaders in the field. This volume covers research methods and new developments in recording images, the creation, evaluation and validation of 3D maps from the images, model building into maps and refinement of the resulting atomic structures, and applications of essentially single particle methods to helical structures and to sub-tomogram averaging.
Methods in Enzymology: Visualizing RNA Dynamics in the Cell continues the legacy of this premier serial with quality chapters authored by leaders in the field. This volume covers research methods visualizing RNA dynamics in the cell, and includes sections on such topics as identification of RNA cis-regulatory sequences, IRAS, IMAGEtags, MERFISH, plant RNA labeling using MS2, and visualization of 5S dynamics in live cells using photostable corn probe.
The Ore Minerals Under the Microscope: An Optical Guide, Second Edition, is a very detailed color atlas for ore/opaque minerals (ore microscopy), with a main emphasis on name and synonyms, short descriptions, mineral groups, chemical compositions, information on major formation environments, optical data, reflection color/shade comparison with four common/standard minerals of a similar color or grey shade, and up to five high-quality photos for each mineral with scale. In addition, the atlas contains a compilation from some of the prominent publications in the field of ore microscopy presented on a list of 431 minerals.
Fluorescence Microscopy: Super-Resolution and other Novel Techniques delivers a comprehensive review of current advances in fluorescence microscopy methods as applied to biological and biomedical science. With contributions selected for clarity, utility, and reproducibility, the work provides practical tools for investigating these ground-breaking developments. Emphasizing super-resolution techniques, light sheet microscopy, sample preparation, new labels, and analysis techniques, this work keeps pace with the innovative technical advances that are increasingly vital to biological and biomedical researchers. With its extensive graphics, inter-method comparisons, and tricks and approaches not revealed in primary publications, Fluorescence Microscopy encourages readers to both understand these methods, and to adapt them to other systems. It also offers instruction on the best visualization to derive quantitative information about cell biological structure and function, delivering crucial guidance on best practices in related laboratory research.
The purpose of this book is to provide the most comprehensive, easy-to-use, and informative guide on light microscopy. Light and Video Microscopy will prepare the reader for the accurate interpretation of an image and understanding of the living cell. With the presentation of geometrical optics, it will assist the reader in understanding image formation and light movement within the microscope. It also provides an explanation of the basic modes of light microscopy and the components of modern electronic imaging systems and guides the reader in determining the physicochemical information of living and developing cells, which influence interpretation.
Autoradiography and Immunocytochemistry sets out in detail the preparation of autoradiographs and methods of preparing and use of immunological staining reagents. This book begins with an introduction to the demand for autoradiography and immunocytochemistry and their most advantageous use, followed by a discussion on the immunocytochemistry at the electron microscopical (EM) level in relation to the preparation of labeled antibodies. Other topics include the general remarks on “staining” with antibodies; applying Fer-Ab conjugates to ultrathin sections; and controls in immunoferritin staining. The multistep antibody staining methods with unmodified proteins; control observations in staining experiments using lectins; and pattern analysis in EM immunocytochemistry are also covered. This text concludes with a description of the preparation of electron microscope autoradiographs, including the radioisotopes in EM autoradiography, preparation of radioactively-labeled tissues and cells, and methods of applying nuclear emulsions. This publication serves as a detailed laboratory guide for researchers and workers to successfully conduct electron microscope techniques.
Urine Analysis presents the theory and methods of urine analysis, which serves as a guide for physicians and medical laboratory technicians. Topics discussed in the book include the physical examination of urine; its chemical examination; microscopical examination; and Ehrliches Diazo reaction. Physicians and medical laboratory technicians will find the book a very valuable reference material.
Progress in Microscopy details the advancement in various areas of microscopy. The title covers the phenomena, techniques, measurements, and equations. The text first details the physical aspects of image formation in microscopy, and then proceeds to tackling phase contrast, interference, and reflected-light microscopy. Next, the selection deals with the geometrical measurements and the measurement of refraction indices, thickness, and slope. The text also covers infra-red and ultra-violet microscopy, microspectroscopy, microspectrophotometry, and chemical microscopy. The book will be of great use to physicists who specializes in optics.
The previous edition of this book marked the shift in technology from video to digital camera use with microscope use in biological science. This new edition presents some of the optical fundamentals needed to provide a quality image to the digital camera. Specifically, it covers the fundamental geometric optics of finite- and infinity-corrected microscopes, develops the concepts of physical optics and Abbe’s theory of image formation, presents the principles of Kohler illumination, and finally reviews the fundamentals of fluorescence and fluorescence microscopy. The second group of chapters deals with digital and video fundamentals: how digital and video cameras work, how to coordinate cameras with microscopes, how to deal with digital data, the fundamentals of image processing, and low light level cameras. The third group of chapters address some specialized areas of microscopy that allow sophisticated measurements of events in living cells that are below the optical limits of resolution.