Chemistry for the Future covers the proceedings of the 29th IUPAC Congress on the Chemistry for the Future, held in Cologne, Federal Republic of Germany on June 5-10, 1983. The contributors consider the advances in inorganic, organic, physical, and theoretical chemistry. This book is organized into seven parts encompassing 59 chapters that also look into the progress in the production of chemical basic materials and education in chemistry. The opening parts survey the advances in complexation chemistry, photoelectrochemical energy conversion, biotechnology, and some aspects of inorganic chemistry. The succeeding part deals with the reactions, synthesis, and structure and properties determination of various organic compounds. Other parts evaluate the application of molecular quantum mechanics, laser studies, electrochemical energy conversion, microemulsion, adsorption, and progress in the production of chemical basic materials. The remaining parts explore the teaching of molecular geometry by the VSEPR method, the role of experiments in teaching chemistry, chemistry as a basis for the life sciences. These parts also examine the flow of information chemistry through databases, IUPAC, and chemical information services. This book will prove useful to organic, inorganic, physical, and theoretical chemists
Provides a one-volume overall picture of the largest of the classical divisions of organic chemistry, suitable for the graduate or advanced undergraduate student, as well as for research workers, both specialists in the field and those engaged in another discipline and requiring knowledge of heterocyclic chemistry. It represents Volume 9 of Comprehensive Heterocyclic Chemistry and utilizes the general chapters which appear in the 8-volume work. The highly systematic coverage given to the subject makes this the most authoritative one-volume account of modern heterocyclic chemistry available.
These Proceedings consider all aspects of the environmental problems facing the world today - scientific, social, economic, philosophical and historical. Many of the discussions which followed paper presentations are included in the text. Along with scientific discussions of solutions to particular problems, the book argues for a new approach to thought and action in the use of natural resources. If a constructive global strategy towards the protection of the environment is to be socially compatible and economically sound, then it must be developed through an interdisciplinary approach which will avoid the impractical solutions which might be suggested by theoretical or unilateral considerations. Ecological, economic, social and cultural research must be accompanied by the development of a new mentality of respect for the environment which will inculcate a reasonable and moderate use of natural resources.
Theory of Electromagnetic Well Logging provides a much-needed and complete analytical method for electromagnetic well logging technology. The book presents the physics and mathematics behind the effective measurement of rock properties using boreholes, allowing geophysicists, petrophysisists, geologists and engineers to interpret them in a more rigorous way. Starting with the fundamental concepts, the book then moves on to the more classic subject of wireline induction logging, before exploring the subject of LWD logging, concluding with new thoughts on electromagnetic telemetry. Theory of Electromagnetic Well Logging is the only book offering an in-depth discussion of the analytical and numerical techniques needed for expert use of those new logging techniques.
This is a graduate textbook on tokamak physics, designed to provide a basic introduction to plasma equilibrium, particle orbits, transport, and those ideal and resistive magnetohydrodynamic instabilities which dominate the behavior of a tokamak discharge, and to develop the mathematical methods necessary for their theoretical analysis.
The properties of materials at high temperature play a vital role in their processing and practical use. The real properties of materials at elevated temperatures are very often governed by defects in their structure. Lattice defects may consist of point defects like vacancies, interstitial atoms or substituted atoms. These classes are discussed in general and specifically for oxides, nitrides, carbides and sulfides. Defect aggregates, shear structures and adaptive structures are also described. Special attention is paid to hydrogen defects which seem to play an important role in several materials.Defects in solids lead to transport properties such as diffusion and conductivity. These themes are thoroughly treated in this book, with examples from various materials being provided. Special attention is paid to the transport properties of grain boundaries. In high temperature corrosion and other types of oxidation, the diffusion of atoms through the reaction products is often the rate limiting step of the reaction. This book takes the reader from the theoretical treatment of defects to applications in high temperature corrosion. Reactions between metals and pure oxygen lead to the formation of oxides on the surface, and the reaction rates may often be related to the diffusion coefficients of the oxide. However, in practical use alloys are subjected to other severe gaseous atmospheres which may often lead to accelerated attack on the material. The severest condition, namely where a salt deposit is combined with oxidizing gases, is called hot corrosion. This and other types of corrosion are also covered. Finally, a chapter is devoted to the prevention of corrosive attack on materials by the addition of rare earth metals.The book has been published in honour of Professor Per Kofstad on the occasion of his 60th birthday. Professor Kofstad has for many years been active in the field of high temperature chemistry in all its aspects, from basic and theoretical work to its application in high temperature corrosion of metals and alloys. The various chapters have been contributed by his friends and colleagues, all of whom are international experts in the field.
With advanced materials being in the midst of a widely acknowledged revolution, there is relentless pressure on scientists and engineers to be on the cutting edge of emerging theories and design methodologies. The 379 papers in this two part volume bring together the experience of specialists in the entire field of applications of Materials Science. This multidisciplinary meeting was held to bring together workers in a wide range of materials science and engineering activities who employ common analytical and experimental methods in their day to day work. The results of the meeting are of worldwide interest, and will help to stimulate future research and analysis in this area.
Written for readers who have some background in solid state physics but do not necessarily possess any knowledge of semiconductor lasers, this book provides a comprehensive and concise account of fundamental semiconductor laser physics, technology and properties. The principles of operation of these lasers are therefore discussed in detail with the interrelations between their design and optical, electrical and thermal properties. The relative merits of a large number of laser structures and their parameters are described to acquaint the reader with the various aspects of the semiconductor lasers and the trends in their development.
Theory of the Earth's Shape considers the physical-mathematical problems raised by the determination of the form of the planet, thereby making a significant contribution to the technological scientific literature in this field. This book is organized into six parts encompassing 29 chapters. The first part, entitled Physical Geodesy, presents the theory of the determination of the gravitational field, in the definition of which preference was given to the method of expansion in spherical harmonics recommended by the International Union of Geodesy and Geophysics in establishing the international "Geodetic Reference System 1967". Part II deals with the principal aspects of Ellipsoidal Geodesy, such as the methods of solving the geodetic problems on the reference ellipsoid. Part III considers the main problems associated with Astro-geodetic Triangulation, particularly with the conception of materialization and the necessary measurements as the required adjustment procedures. This part also provides approaches regarding the controlled analysis of angular measurements and the description of some original calculation and measurement methods. Part IV concerns one of the methods of determining the spatial coordinates of the geodetic points in a unitary system, such as the three-dimensional geodesy, which has had more concrete applications since the launching of the Earth's first artificial satellites. Part V describes the methods for determining the terrestrial ellipsoid and the geoid, as well as the conventional methods and the methods of Dynamical Geodesy. Part VI discusses the geodetic methods for the determination of the movements of the Earth's crust, along with an overall examination of the theoretical and practical aspects which in principle constitute the object of such activities. This book will prove useful to geophysicists, astronomers, Earth scientists, and researchers.
Geomorphology and Volcanology of Costa Rica is the product of more than 30 years of research explaining the evolution of the quaternary relief of a geomorphologically diverse country. The book details the physical landscape of Costa Rica, with an emphasis on potential threats to the landscape, such as earthquakes, landslides, floods, and sea level rise. The book answers questions on the climate changes associated with the intense volcanism that affects this country. Geomorphologists, geologists, geographers, and students who specialize in the Earth Sciences will benefit from knowing the geomorphology of Costa Rica, not only as a case study, but also for the lessons it offers on climate change and worldwide geological history.