New Materials and Devices for 5G Applications and Beyond focuses on the materials, device architectures, and enabling integration schemes for 5G applications and emerging technologies. The book gives a comprehensive overview of the tradeoffs, challenges, and unique properties of novel upcoming technologies. Starting from the application side and its requirements, the book examines different technologies under consideration for different functions, both conventional and more exploratory, and within this context the book provides guidance to the reader on how to possibly optimize the system for a particular application. This book aims at guiding the reader through the technologies required to enable 5G applications, with the main focus on mm-wave frequencies, up to THz. It is suitable for industrial researchers and development engineers, and researchers in materials science, device engineering, and circuit design.
Treatise on Process Metallurgy: Volume One, Process Fundamentals provides academics with the fundamentals of the manufacturing of metallic materials, from raw materials into finished parts or products. In these fully updated volumes, coverage is expanded into four volumes, including Process Fundamentals, encompassing process fundamentals, structure and properties of matter; thermodynamic aspects of process metallurgy, and rate phenomena in process metallurgy; Processing Phenomena, encompassing interfacial phenomena in high temperature metallurgy, metallurgical process phenomena, and metallurgical process technology; Metallurgical Processes, encompassing mineral processing, aqueous processing, electrochemical material and energy processes, and iron and steel technology, non-ferrous process principles and production technologies, and more. The work distills the combined academic experience from the principal editor and the multidisciplinary four-member editorial board.
Coal and Coalbed Gas: Future Directions and Opportunities, Second Edition introduces the latest in coal geology research and the engineering of gas extraction. Importantly, the second edition examines how, over the last 10 years, research has both changed focus and where it is conducted. This shift essentially depicts "a tale of two worlds"—one half (Western Europe, North America) moving away from coal and coalbed gas research and production towards cleaner energy resources, and the other half (Asia–Pacific region, Eastern Europe, South America) increasing both research and usage of coal. These changes are marked by a precipitous fall in coalbed gas production in North America; however, at the same time there has been a significant rise in coal and coalbed gas production in Australia, China, and India. The driver for higher production and its associated research is a quest for affordable energy and economic security that a large resource base brings to any country like Australia’s first large-scale coalbed gas to liquid natural gas projects supplying the demand for cleaner burning LNG to the Asian-Pacific region. Since the last edition of this book, global climate change policies have more forcibly emphasized the impact of methane from coal mines and placed these emissions equal to, or even more harmful than, CO2 emissions from fossil fuels in general. Governmental policies have prioritized capture, use, and storage of CO2, burning coal in new highly efficient low emission power plants, and gas pre-drainage of coal mines. The Organization for Economic Cooperation and Development (OECD) countries and China are also introducing new research into alternative, non-fuel uses for coal, such as carbon fibers, nanocarbons, graphene, soil amendments, and as an unconventional ore for critical elements. New to this edition: Each chapter is substantially changed from the 1st edition including expanded and new literature citations and reviews, important new data and information, new features and materials, as well as re-organized and re-designed themes. Importantly, three new chapters cover global coal endowment and gas potential, groundwater systems related to coalbed gas production and biogenic gas generation as well as the changing landscape of coal and coalbed gas influenced by global climate change and net-zero carbon greenhouse gas emissions. FOREWORD When I reviewed the first edition of this book, my initial thought was, "Do we need another book on coal geology?" and then I read it and realised, "Yes, we need this book" and my students downloaded copies as soon as it was available. So now we come to 2023, and a lot has happened in the past decade. For a different reason we might ask if we still need this book, or even coal geoscientists and engineers, as the world aims for rapid decarbonisation of the energy sector and a reduction of coal as a feedstock for industrial resources, like steel manufacture. Natural gas is earmarked as a transition fuel to enable the shift to renewables. In some basins, the source of that gas is directly from coalbed gas production or from conventional reservoirs that were charged by coal and terrestrial organic source rocks. Although the transition is escalating, there are projections that coal will remain part of our future, even after 2050, and can also provide alternative non-fuel resources (e.g., critical elements and carbon-based nanomaterials). Between now and then, we’d best ensure that we extract and utilise coal and coalbed gas as efficiently and safely as possible, that we mitigate any environmental and social impact of the process, and that we improve our certainty of predicting the behaviour of the material and material impacts. To do this we need to understand coal as a material and the inherent variability of its quality and behaviour as a source rock and host of coalbed gas. One can change the technologies but not the geological ground conditions or coal character of the targeted resource. The authors have taken on this ambitious endeavour during their careers and have attempted to capture their knowledge gained from first-hand experience in countries around the world and comprehensive review of published material, within this book. At least three generations of knowledge are drawn upon here. Tim Moore was a student of both Romeo Flores and his supervisor John Ferm, who was the "Warrior of Gentleness" when it came to coal research, teaching, and supervision. This book also reflects the broad and multidisciplinary aspects of coal geology and coal science and provides the tenets for one to understand different disciplines and how they interact to form an integrated view of the resource—technically, economically, and politically. Each chapter takes the reader through different concepts, first setting the scene by examining the status of coal and coalbed gas in a carbon-conscious world, then looking at the science behind coal as a source of gas and as a reservoir- in its own right. Further reading leads to learning about geological settings and the processes through time that led to present-day endowments around the globe and this theme continues throughout the book with detailed examples from different countries. Personally, I like the emphasis on the depositional environments that lead to peat accumulation and preservation—it’s all about the ingredients—which leads nicely into the world of coal macerals and minerals, and why they matter. Coalification and its role in changing the chemistry and material properties of coal is covered from a reservoir perspective, as is the role of biogenic processes. These have produced some of the enormous gas resources we exploit today and could also provide a future circular economy for neo-biogenic gas. The role of groundwater in this past and potentially future endeavour is presented, along with possible adverse effects where there is unexpected communication with regional and local aquifers and surface assets that detract from environmental and social licence. In addition to describing the geology and engineering technologies required to explore for, access, and utilise these resources, the book also provides insights into geostatistical and economic modelling for reserves estimation and challenges as reservoirs become more geologically and politically complex for extraction and alternatively, for injection and carbon sequestration. The final chapters revisit and integrate concepts presented in the book in order to examine global gas production and the geographic shifts in production and research that have occurred over the past decade(s). The also show how government and the market play a role, and project future trends. The authors provide discussion points for the outlook of coal as a fuel feedstock in a carbon-constrained world and the ongoing search for options and alternative non-fuel uses of coal while highlighting the important role that coal and coalbed gas still play during the transition period and beyond. There is much to learn from this book, which is based on decades of observing and interpreting patterns and trends in coal and coal-bearing basins. There is a growing trend towards using machine learning and artificial intelligence to find patterns in data and provide solutions. I’d suggest that domain intelligence, such as that provided in this book, is critical to supervising this process and is required for understanding and validating the outputs upon which many decisions are made and will continue to be made in the future. So yes, we need this book and I invite you to read, learn, and form your own ideas. If you find any gaps—write about them. Joan S. Esterle Emeritus Professor Vale Chair of Coal Geosciences The University of Queensland, AustraliaMay 2023
Advances in Thermoplastic Elastomers: Challenges and Opportunities brings together the state-of-the-art in thermoplastic elastomers (TPEs), covering innovative materials, synthesis techniques, processing methods and sustainability. Sections outline thermoplastic elastomers, rubber elastic, and thermoplastic vulcanizates, and review the current landscape, from research and published literature, to commercialization and patents. Subsequent chapters offer methodical coverage of different categories of advanced thermoplastic elastomer materials, including areas such as polyolefin-based TPEs and high performance TPEs. The final chapters in the book examine options for sustainability, including bio-based, bio-resourced, and biodegradable TPEs, as well as circular economy and recycling of TPEs.Finally, outlook and future market and research trends are reviewed. This is a valuable book for researchers and advanced students working with elastomers, polymer science, materials chemistry, and materials engineering. In an industrial setting, this is an essential resource for R&D professionals, scientists, and engineers looking to utilize thermoplastic elastomers in a range of advanced applications.
Molten Salt Reactors and Thorium Energy, Second Edition is a fully updated comprehensive reference on the latest advances in MSR research and technology. Building on the successful first edition, Tom Dolan and the team of experts have fully updated the content to reflect the impressive advances from the last 5 years, ensuring this book continues to be the go-to reference on the topic. This new edition covers progress made in MSR design, details innovative experiments, and includes molten salt data, corrosion studies and deployment plans. The successful case studies section of the first edition have been removed, expanded, and fully updated, and are now published in a companion title called Global Case Studies on Molten Salt Reactors. Readers will gain a deep understanding of the advantages and challenges of MSR development and thorium fuel use, as well as step-by-step guidance on the latest in MSR reactor design. Each chapter provides a clear introduction, covers technical issues and includes examples and conclusions, while promoting the sustainability benefits throughout.
Global Progress on Molten Salt Reactors: A Companion to Dolan’s Molten Salt Reactors and Thorium Energy, Second Edition presents global perspectives on the latest research and technological advances. Each case study utilizes a comprehensive template that guides the reader through country specific research. Useful data which can be applied to work and research is included, along with a list of references for further research. Researchers, professional engineers and policymakers will gain a broad picture of worldwide MSR activity and a deep understanding of how theory and practical guidance is applied in a variety of settings, including budgets, approaches and constraints.
Advances in Plasma Treatment of Textile Surfaces offers a detailed overview on the use of plasma in natural and synthetic textiles and explores applications in technical textiles, including composites, ballistic performance, functionalization, and textile wastewater treatment. This promising technology can alter the surface properties of textiles without having a significant effect on their bulk properties, leading to potential improvements to the scouring, de-sizing, dyeing, finishing, printing, and laminating processes among others. Drawing on an international team of contributors from industry as well as academia, this important book brings these innovative sustainable plasma treatments to textile and polymer scientists working in textile functionalization.
Porous Coordination Polymers: From Fundamentals to Advanced Applications offers a comprehensive coverage the latest advances in porous coordination polymers for cutting-edge applications. Porous Coordination Polymers are gaining increasing interest due to their attractive properties, such as structural flexibility, large surface area, tailorable pore size, and functional tunability, in turn enabling a wide range of possible applications which this book aims to highlight and to elucidate.The book begins by introducing porous coordination polymers, highlighting their structure, chemistry, basic properties, and design approaches. This is followed by a chapter focusing on synthetic methods and mechanical properties. Subsequent chapters provide in-depth coverage of specific target applications, explaining the preparation of porous coordination polymers for areas including catalysis and photocatalysis, environmental remediation, gas storage and separation, energy storage and conversion, new generation magnets, nanocarriers in therapeutics, and biomedical imaging. Finally, current challenges and future developments are considered in detail.
Fundamentals of Membrane Separation Technology provides a comprehensive and systematic introduction to this environmentally-friendly separation process. Using a structured format that promotes comprehension and implementation, each chapter provides overviews, principles, materials, preparation, and industrial applications. Each chapter then concludes with future prospects, references, and end-of-chapter exercises. Written for students and professionals, this book is an ideal reference for those who wish to better understand the fundamentals and applications of membrane technology.
Electrochemical Membrane Technology includes a comprehensive discussion of timely topics surrounding electrochemical membrane technologies, including SWOT analysis of each electrochemical membrane technology, along with a discussion on energy production. The book covers both theoretical and experimental studies on electrochemical membrane technologies and applications, making it ideal for chemical and environmental engineers, professors and other university teachers, research scientists, graduate students, water treatment managers, research institutions, and R&D departments of industries involved in sustainable water treatment and coproduction of valuable products from water treatment technologies.