Value-Chain of Biofuels: Fundamentals, Technology, and Standardization presents the fundamental aspects of biofuel production, from biomass conversion technologies and biofuels’ end products to related policy regulation and standardization. Sections explore the current biofuels industry, addressing pretreatment, feedstocks, and conversion processes, review different pathways to produce biofuels, including bioethanol, biochar, biogas/bio-hydrogen, bio-oil, biodiesel, and many others, and finally, present policy regulation and standardization on biofuel production, with a focus on applications. Case studies are provided alongside reviews from academic and industry perspectives, discussing economics and lifecycle assessments (LCA) of biofuel production, as well as analyses of supply chains. Offering a comprehensive and timely overview, this book provides an ideal reference for researchers and practitioners working in bioenergy and renewable energy, but it will also be of interest to chemists, bioengineers, chemical engineers, and the agricultural and petrochemical industries.
Metal-Catalyzed Asymmetric Hydrogenation, Volume 68 in the Advances in Catalysis series, fills the gap between journal papers and textbooks across diverse areas of catalysis research. For more than 60 years, this series has recorded and presented the latest progress in the field of catalysis, giving the scientific community comprehensive and authoritative reviews. Chapters in this new release include Asymmetric hydrogenation of functionalized olefins, Asymmetric hydrogenation of unfunctionalized olefins or with poorly coordinative groups, Asymmetric hydrogenation of imines, Asymmetric hydrogenation of ketones, Asymmetric hydrogenation in industry, and Computational insights into metal-catalyzed asymmetric hydrogenation. This series is an invaluable and comprehensive resource for chemical engineers and chemists working in the field of catalysis in both academia and industry, with this release focusing on solid acids, surface acidity and heterogeneous acid catalysis.
Waste-to-Energy Approaches Towards Zero Waste: Interdisciplinary Methods of Controlling Waste provides a comprehensive overview of the key technologies and approaches to achieve zero waste from energy. The book emphasizes the importance of an integrated approach to waste-to-energy using fundamental concepts and principles, and presents key methods, their applications, and perspectives on future development. The book provides readers with the tools to make key decisions on waste-to-energy projects from zero-waste principles, while incorporating sustainability and life cycle assessments from financial and environmental perspectives. Waste-to-Energy Approaches Towards Zero Waste: Interdisciplinary Methods of Controlling Waste offers practical guidance on achieving energy with zero waste ideal for researchers and graduate students involved in waste-to-energy and renewable energy, waste remediation, and sustainability.
Biodegradable Polymers, Blends and Composites provides a comprehensive review on recent developments in this very important research field. The book's chapters cover the various types of biodegradable polymers currently available and their composites, with discussions on preparation, properties and applications. Sections cover natural rubber-based polymer blends, soy-protein, cellulose, chitin, starch-based, PLA, PHBV, PCL, PVA, PBAT-based blends, Poly (ethylene succinate), PHB and Poly (propylene carbonates). The book will be a valuable reference resource for academic and industrial researchers, technologists and engineers working on recent developments in the area of biodegradable polymers, their blends and composites.
Nanoparticle therapeutics: Production Technologies, Types of Nanoparticles, and Regulatory Aspects employs unique principles for applications in cell-based therapeutics, diagnostics and mechanistics for the study of organ physiology, disease etiology and drug screening of advanced nanoparticles and nanomaterials. The book focuses on the extrapolation of bioengineering tools in the domain of nanotechnology and nanoparticles therapeutics, fabrication, characterization and drug delivery aspects. It acquaints scientists and researchers on the experiential and experimental aspects of nanoparticles and nanotechnology to equip their rational application in various fields, especially in differential diagnoses and in the treatment of diverse diseased states. This complete resource provides a holistic understanding of the principle behind formation, characterization, applications, regulations and toxicity of nanoparticles employing myriad principles of nanotechnology. Investigators, pharmaceutical researchers, and advanced students working on technology advancement in the areas of designing targeted therapies, nanoscale imaging systems and diagnostic modalities in human diseases where nanoparticles can be used as a critical tool for technology advancement in drug delivery systems will find this book useful.
Foaming with Supercritical Fluids, Volume Nine provides a comprehensive description of the use of supercritical fluids as blowing agents in polymer foaming. To this aim, the fundamental issues on which the proper design and control of this process are rooted are discussed in detail, with specific attention devoted to the theoretical and experimental aspects of sorption thermodynamics of a blowing agent within a polymer, the effect of the absorbed blowing agent on the thermal, interfacial and rheological properties of the expanding matter, and the phase separation of the gaseous phase, and of the related bubble nucleation and growth phenomena. Several foaming technologies based on the use of supercritical blowing agents are then described, addressing the main issues in the light of the underlying chemical-physical phenomena.
The drive to develop more sustainable materials has made fly ash a valuable raw material in many different applications. Comprehensive and authoritative, Handbook of Fly Ash highlights the latest research efforts to develop the properties of fly ash to maximum utility while safeguarding the environment. This book takes an interdisciplinary approach to the research into the classification and compositions of various types of fly ash, such as bottom ash and boiler slag, special classes of fly ash, and their sources around the globe. This is followed by a discussion of fly ash-reinforced composites, such as elastomer-based composites and metal matrix composites. This book also covers a wide range of applications of fly ash in cement, concrete, bricks and blocks, road construction, wastewater treatment, and scrubber sludge solidification.
Carbon materials form pores ranging in size and morphology, from micropores of less than 1nm, to macropores of more than 50nm, and from channel-like spaces with homogenous diameters in carbon nanotubes, to round spaces in various fullerene cages, including irregularly-shaped pores in polycrystalline carbon materials. The large quantity and rapid rate of absorption of various molecules made possible by these attributes of carbon materials are now used in the storage of foreign atoms and ions for energy storage, conversion and adsorption, and for environmental remediation. Porous Carbons: Syntheses and Applications focuses on the fabrication and application of porous carbons. It considers fabrication at three scales: micropores, mesopores, and macropores. Carbon foams, sponges, and 3D-structured carbons are detailed. The title presents applications in four key areas: energy storage, energy conversion, energy adsorption, including batteries, supercapacitors, and fuel cells and environmental remediation, emphasizing the importance of pore structures at the three scales, and the diffusion and storage of various ions and molecules. The book presents a short history of each technique and material, and assesses advantages and disadvantages. This focused book provides researchers with a comprehensive understanding of both pioneering and current synthesis techniques for porous carbons, and their modern applications.
Upconversion Nanophosphors provides detailed information about various lanthanide-based upconversion nanoparticles and their application in different fields. It will also help solve fundamental and applied problems of inorganic phosphor materials showing upconversion behavior, as well as generate innovative ideas related to the application of inorganic phosphor materials. This book will prove to be an invaluable reference work for scientists, engineers, industrial experts, and masters and PhD students working in the field of upconversion and materials science.
Musculoskeletal Tissue Engineering introduces the fundamental concepts and translational applications of musculoskeletal tissue engineering, in combination with emerging technologies and materials. Sections discuss Tissues and Technologies, covering a range of musculoskeletal tissues, including bone, cartilage, ligament and more. Each chapter in this section details core tissue engineering principles specific to each tissue type. Next, a Technologies section looks at the range of biomaterials used in musculoskeletal tissue engineering, focusing on biocompatibility of materials and interactions at the material-tissue interface. Other chapters cover nanotechnology, 3D printing, gene therapy, tissue chips, and more. This book offers an advanced reference text for researchers in biomedical engineering, materials science and regenerative medicine.