Skip to main content

Books in Physical sciences and engineering

  • Lignin in Polymer Composites

    • 1st Edition
    • Omar Faruk + 1 more
    • English
    Lignin in Polymer Composites presents the latest information on lignin, a natural polymer derived from renewable resources that has great potential as a reinforcement material in composites because it is non-toxic, inexpensive, available in large amounts, and is starting to be deployed in various materials applications due to its advantages over more traditional oil-based materials. This book reviews the state-of-the-art on the topic and their applications to composites, including thermoplastic, thermosets, rubber, foams, bioplastics, nanocomposites, and lignin-based carbon fiber composites. In addition, the book covers critical assessments on the economics of lignin, including a cost-performance analysis that discusses its strengths and weaknesses as a reinforcement material. Finally, the huge potential applications of lignin in industry are explored with respect to its low cost, recyclable properties, and fully biodegradable composites, and the way they apply to the automotive, construction, and packaging industries.
  • Applied Welding Engineering

    Processes, Codes, and Standards
    • 2nd Edition
    • Ramesh Singh
    • English
    A practical and in-depth guide to materials selection, welding techniques, and procedures, Applied Welding Engineering: Processes, Codes and Standards, provides expert advice for complying with international codes as well as working them into "day to day" design, construction and inspection activities. New content in this edition covers the standards and codes of the Canadian Welding Society, and the DNV standards in addition to updates to existing coverage of the American Welding Society, American Society of Mechanical Engineers, The Welding Institute (UK). The book’s four part treatment starts with a clear and rigorous exposition of the science of metallurgy including but not limited to: Alloys, Physical Metallurgy, Structure of Materials, Non-Ferrous Materials, Mechanical Properties and Testing of Metals and Heal Treatment of Steels. This is followed by applications: Welding Metallurgy & Welding Processes, Nondestructive Testing, and Codes and Standards. Case studies are included in the book to provide a bridge between theory and the real world of welding engineering. Other topics addressed include: Mechanical Properties and Testing of Metals, Heat Treatment of Steels, Effect of Heat on Material During Welding, Stresses, Shrinkage and Distortion in Welding, Welding, Corrosion Resistant Alloys-Stainless Steel, Welding Defects and Inspection, Codes, Specifications and Standards.
  • Statistical Thermodynamics of Semiconductor Alloys

    • 1st Edition
    • Vyacheslav A Elyukhin
    • English
    Statistical Thermodynamics of Semiconductor Alloys is the consideration of thermodynamic properties and characteristics of crystalline semiconductor alloys by the methods of statistical thermodynamics. The topics presented in this book make it possible to solve such problems as calculation of a miscibility gap, a spinodal decomposition range, a short-range order, deformations of crystal structure, and description of the order-disorder transitions. Semiconductor alloys, including doped elemental semiconductors are the basic materials of solid-state electronics. Their structural stability and other characteristics are key to determining the reliability and lifetime of devices, making the investigation of stability conditions an important part of semiconductor physics, materials science, and engineering. This book is a guide to predicting and studying the thermodynamic properties and characteristics of the basic materials of solid-state electronics.
  • Essentials of Coordination Chemistry

    A Simplified Approach with 3D Visuals
    • 1st Edition
    • Vasishta Bhatt
    • English
    Essentials of Coordination Chemistry: A Simplified Approach with 3D Visuals provides an accessible overview of this key, foundational topic in inorganic chemistry. Thoroughly illustrated within the book and supplemented by online 3D images and videos in full color, this valuable resource covers basic fundamentals before exploring more advanced topics of interest. The work begins with an introduction to the structure, properties, and syntheses of ligands with metal centers, before discussing the variety of isomerism exhibited by coordination compounds, such as structural, geometrical and optical isomerism. As thermodynamics and kinetics provide a gateway to synthesis and reactivity of coordination compounds, the book then describes the determination of stability constants and composition of complexes. Building upon those principles, the resource then explains a wide variety of nucleophilic substitution reactions exhibited by both octahedral and square planar complexes. Finally, the book discusses metal carbonyls and nitrosyls, special classes of compounds that can stabilize zero or even negative formal oxidation states of metal ions. Highlighting preparations, properties, and structures, the text explores the unique type of Metal-Ligand bonding which enable many interesting applications of these compounds. Thoughtfully organized for academic use, Essentials of Coordination Chemistry: A Simplified Approach with 3D Visuals encourages interactive learning. Advanced undergraduate and graduate students, as well as researchers requiring a full overview and visual understanding of coordination chemistry, will find this book invaluable.
  • Photodetectors

    Materials, Devices and Applications
    • 1st Edition
    • English
    Photodetectors: Materials, Devices and Applications discusses the devices that convert light to electrical signals, key components in communication, computation, and imaging systems. In recent years, there has been significant improvement in photodetector performance, and this important book reviews some of the key advances in the field. Part one covers materials, detector types, and devices, and includes discussion of silicon photonics, detectors based on reduced dimensional charge systems, carbon nanotubes, graphene, nanowires, low-temperature grown gallium arsenide, plasmonic, Si photomultiplier tubes, and organic photodetectors, while part two focuses on important applications of photodetectors, including microwave photonics, communications, high-speed single photon detection, THz detection, resonant cavity enhanced photodetection, photo-capacitors and imaging.
  • Analytical, Approximate-Analytical and Numerical Methods in the Design of Energy Analyzers

    • 1st Edition
    • Volume 192
    • English
    Advances in Imaging and Electron Physics merges two long-running serials, Advances in Electronics and Electron Physics and Advances in Optical and Electron Microscopy. The series features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science, and digital image processing, electromagnetic wave propagation, electron microscopy, and the computing methods used in all these domains.
  • Magnetism of Surfaces, Interfaces, and Nanoscale Materials

    • 1st Edition
    • Volume 5
    • Robert E. Camley + 2 more
    • English
    In the past 30 years, magnetic research has been dominated by the question of how surfaces and interfaces influence the magnetic and transport properties of nanostructures, thin films and multilayers. The research has been particularly important in the magnetic recording industry where the giant magnetoresistance effect led to a new generation of storage devices including hand-held memories such as those found in the ipod. More recently, transfer of spin angular momentum across interfaces has opened a new field for high frequency applications.This book gives a comprehensive view of research at the forefront of these fields. The frontier is expanding through dynamic exchange between theory and experiment. Contributions have been chosen to reflect this, giving the reader a unified overview of the topic.
  • Traffic Flow Theory

    Characteristics, Experimental Methods, and Numerical Techniques
    • 1st Edition
    • Daiheng Ni
    • English
    Creating Traffic Models is a challenging task because some of their interactions and system components are difficult to adequately express in a mathematical form. Traffic Flow Theory: Characteristics, Experimental Methods, and Numerical Techniques provide traffic engineers with the necessary methods and techniques for mathematically representing traffic flow. The book begins with a rigorous but easy to understand exposition of traffic flow characteristics including Intelligent Transportation Systems (ITS) and traffic sensing technologies.
  • The Birnbaum-Saunders Distribution

    • 1st Edition
    • Victor Leiva
    • English
    The Birnbaum-Saunders Distribution presents the statistical theory, methodology, and applications of the Birnbaum-Saunders distribution, a very flexible distribution for modeling different types of data (mainly lifetime data). The book describes the most recent theoretical developments of this model, including properties, transformations and related distributions, lifetime analysis, and shape analysis. It discusses methods of inference based on uncensored and censored data, goodness-of-fit tests, and random number generation algorithms for the Birnbaum-Saunders distribution, also presenting existing and future applications.
  • Hidden Semi-Markov Models

    Theory, Algorithms and Applications
    • 1st Edition
    • Shun-Zheng Yu
    • English
    Hidden semi-Markov models (HSMMs) are among the most important models in the area of artificial intelligence / machine learning. Since the first HSMM was introduced in 1980 for machine recognition of speech, three other HSMMs have been proposed, with various definitions of duration and observation distributions. Those models have different expressions, algorithms, computational complexities, and applicable areas, without explicitly interchangeable forms. Hidden Semi-Markov Models: Theory, Algorithms and Applications provides a unified and foundational approach to HSMMs, including various HSMMs (such as the explicit duration, variable transition, and residential time of HSMMs), inference and estimation algorithms, implementation methods and application instances. Learn new developments and state-of-the-art emerging topics as they relate to HSMMs, presented with examples drawn from medicine, engineering and computer science.