Skip to main content

Books in Physics

Physics titles offer comprehensive research and advancements across the fundamental and applied areas of physical science. From quantum mechanics and particle physics to astrophysics and materials science, these titles drive innovation and deepen understanding of the principles governing the universe. Essential for researchers, educators, and students, this collection supports scientific progress and practical applications across a diverse range of physics disciplines.

  • Handbook on the Physics and Chemistry of Rare Earths

    • 1st Edition
    • Volume 48
    • November 17, 2015
    • English
    Handbook on the Physics and Chemistry of Rare Earths is a continuous series of books covering all aspects of rare earth science, including chemistry, life sciences, materials science, and physics. The main emphasis of the handbook is on rare earth elements [Sc, Y and the lanthanides (La through Lu)], but whenever relevant, information is also included on the closely related actinide elements. The individual chapters are comprehensive, broad, up-to-date, critical reviews written by highly experienced invited experts. The series, which was started in 1978 by Professor Karl A. Gschneidner Jr., combines and integrates both the fundamentals and applications of these elements, now publishing two volumes a year.
  • Handbook of Magnetic Materials

    • 1st Edition
    • Volume 24
    • November 17, 2015
    • English
    Handbook of Magnetic Materials covers the expansion of magnetism over the last few decades and its applications in research, notably the magnetism of several classes of novel materials that share with truly ferromagnetic materials the presence of magnetic moments. Volume 24 of the Handbook of Magnetic Materials, much like the preceding volumes, has a dual purpose. With contributions from leading authorities in the field, it includes a variety of self-contained introductions to a given area in the field of magnetism without requiring recourse to the published literature. The book is an ideal reference for scientists active in magnetism research, providing readers with novel trends and achievements in magnetism. Each article contains an extensive description given in graphical, as well as, tabular form, with much emphasis placed on the discussion of the experimental material within the framework of physics, chemistry, and material science.
  • Solid State Physics

    • 1st Edition
    • Volume 66
    • October 27, 2015
    • English
    Solid State Physics provides the latest information on the branch of physics that is primarily devoted to the study of matter in its solid phase, especially at the atomic level. This prestigious serial presents timely and state-of-the-art reviews pertaining to all aspects of solid state physics.
  • Statistical Thermodynamics of Semiconductor Alloys

    • 1st Edition
    • October 23, 2015
    • Vyacheslav A Elyukhin
    • English
    Statistical Thermodynamics of Semiconductor Alloys is the consideration of thermodynamic properties and characteristics of crystalline semiconductor alloys by the methods of statistical thermodynamics. The topics presented in this book make it possible to solve such problems as calculation of a miscibility gap, a spinodal decomposition range, a short-range order, deformations of crystal structure, and description of the order-disorder transitions. Semiconductor alloys, including doped elemental semiconductors are the basic materials of solid-state electronics. Their structural stability and other characteristics are key to determining the reliability and lifetime of devices, making the investigation of stability conditions an important part of semiconductor physics, materials science, and engineering. This book is a guide to predicting and studying the thermodynamic properties and characteristics of the basic materials of solid-state electronics.
  • Magnetism of Surfaces, Interfaces, and Nanoscale Materials

    • 1st Edition
    • Volume 5
    • October 22, 2015
    • Robert E. Camley + 2 more
    • English
    In the past 30 years, magnetic research has been dominated by the question of how surfaces and interfaces influence the magnetic and transport properties of nanostructures, thin films and multilayers. The research has been particularly important in the magnetic recording industry where the giant magnetoresistance effect led to a new generation of storage devices including hand-held memories such as those found in the ipod. More recently, transfer of spin angular momentum across interfaces has opened a new field for high frequency applications.This book gives a comprehensive view of research at the forefront of these fields. The frontier is expanding through dynamic exchange between theory and experiment. Contributions have been chosen to reflect this, giving the reader a unified overview of the topic.
  • Principles and Applications of Quantum Chemistry

    • 1st Edition
    • October 15, 2015
    • V.P. Gupta
    • English
    Principles and Applications of Quantum Chemistry offers clear and simple coverage based on the author’s extensive teaching at advanced universities around the globe. Where needed, derivations are detailed in an easy-to-follow manner so that you will understand the physical and mathematical aspects of quantum chemistry and molecular electronic structure. Building on this foundation, this book then explores applications, using illustrative examples to demonstrate the use of quantum chemical tools in research problems. Each chapter also uses innovative problems and bibliographic references to guide you, and throughout the book chapters cover important advances in the field including: Density functional theory (DFT) and time-dependent DFT (TD-DFT), characterization of chemical reactions, prediction of molecular geometry, molecular electrostatic potential, and quantum theory of atoms in molecules.
  • Handbook on the Physics and Chemistry of Rare Earths

    • 1st Edition
    • Volume 47
    • October 12, 2015
    • English
    Handbook on the Physics and Chemistry of Rare Earths is a continuing series of books covering all aspects of rare earth science, including chemistry, life sciences, materials science, and physics. The handbook emphasizes rare earth elements [Sc, Y and the lanthanides (La through Lu)] but, when relevant, information also is included about the closely related actinide elements. The individual chapters are comprehensive, broad, up-to-date critical reviews written by highly experienced invited experts. The series, which was started in 1978 by Professor Karl A. Gschneidner, Jr., combines and integrates both the fundamentals and applications of these elements and now publishes two volumes a year.
  • Mathematical Modeling in Diffraction Theory

    Based on A Priori Information on the Analytical Properties of the Solution
    • 1st Edition
    • September 19, 2015
    • Alexander G. Kyurkchan + 1 more
    • English
    Mathematical Modeling in Diffraction Theory: Based on A Priori Information on the Analytical Properties of the Solution provides the fundamental physical concepts behind the theory of wave diffraction and scattered wave fields as well as its application in radio physics, acoustics, optics, radio astronomy, biophysics, geophysics, and astrophysics. This book provides a coherent discussion of several advanced topics that have the potential to push forward progress in this field. It begins with examples illustrating the importance of taking a priori information into account when developing algorithms for solving diffraction problems, with subsequent chapters discussing the basic analytical representations of wave fields, the auxiliary current and source methods for solving the problems of diffraction at compact scatterers, the null field and matrix methods that are widely used to solve problems in radio-physics, radio-astronomy, and biophysics, and the continued boundary condition and pattern equation method.
  • Advances in Atomic, Molecular, and Optical Physics

    • 1st Edition
    • Volume 64
    • September 14, 2015
    • English
    Advances in Atomic, Molecular, and Optical Physics provides a comprehensive compilation of recent developments in a field that is in a state of rapid growth, as new experimental and theoretical techniques are used on many problems, both old and new. Topics covered include related applied areas, such as atmospheric science, astrophysics, surface physics, and laser physics, with timely articles written by distinguished experts that contain relevant review material and detailed descriptions of important developments in the field.
  • Derivative with a New Parameter

    Theory, Methods and Applications
    • 1st Edition
    • September 10, 2015
    • Abdon Atangana
    • English
    Derivative with a New Parameter: Theory, Methods and Applications discusses the first application of the local derivative that was done by Newton for general physics, and later for other areas of the sciences. The book starts off by giving a history of derivatives, from Newton to Caputo. It then goes on to introduce the new parameters for the local derivative, including its definition and properties. Additional topics define beta-Laplace transforms, beta-Sumudu transforms, and beta-Fourier transforms, including their properties, and then go on to describe the method for partial differential with the beta derivatives. Subsequent sections give examples on how local derivatives with a new parameter can be used to model different applications, such as groundwater flow and different diseases. The book gives an introduction to the newly-established local derivative with new parameters, along with their integral transforms and applications, also including great examples on how it can be used in epidemiology and groundwater studies.