Skip to main content

Books in Physics

Physics titles offer comprehensive research and advancements across the fundamental and applied areas of physical science. From quantum mechanics and particle physics to astrophysics and materials science, these titles drive innovation and deepen understanding of the principles governing the universe. Essential for researchers, educators, and students, this collection supports scientific progress and practical applications across a diverse range of physics disciplines.

  • Emerging Nanotechnologies for Manufacturing

    • 1st Edition
    • Waqar Ahmed + 2 more
    • English
    Nanotechnology is a technology on the verge of commercialization. In this important work, an unrivalled team of international experts provides an exploration of the emerging nanotechnologies that are poised to make the nano-revolution a reality in the manufacturing sector. From their different perspectives, the contributors explore how developments in nanotechnology are transforming areas as diverse as medicine, advanced materials, energy, electronics and agriculture. Key topics covered include: Characterization of nanostructures Bionanotechnology Nanoelectronics Micro- and nanomachining Self-assembly techniques New applications of carbon nanotubes Environmental and health impacts This book provides an important and in-depth guide to the applications and impact of nanotechnology to different manufacturing sectors. As such, it will find a broad readership, from R&D scientists and engineers to venture capitalists. About the Authors Waqar Ahmed is Chair of Nanotechnology & Advanced Manufacturing and the Director of the Institute of Advanced Manufacturing and Innovation at the University of Central Lancashire, UK. He has contributed to the wider industrial adoption of surface coating solutions through fundamental research and modeling of gas phase processes in CVD and studies of tribological behavior. Mark J. Jackson is a Professor at the Birck Nanotechnology Center and Center for Advanced Manufacturing, College of Technology at Purdue University. Dr Jackson is active in research work concerned with understanding the properties of materials in the field of microscale metal cutting, micro- and nanoabrasive machining, and laser micromachining. He is also involved in developing next generation manufacturing processes and biomedical engineering.
  • Quantum Coherence and Decoherence

    • 1st Edition
    • K. Fujikawa + 1 more
    • English
    Just as in the pervious five symposia, the aim of this symposium was to link the recent advances in technology with fundamental problems in quantum mechanics. It provided a unique interdisciplinary forum where scientists with different backgrounds were given the opportunity to discuss basic problems of common interest in quantum science and technology from various aspects. This included not only an examination of the topic in terms of quantum optics and mesoscopic physics, but also in terms of the physics of precise measurement, macroscopic quantum phenomena, complex systems, and other fundamental problems in quantum physics. Two new important fields were also dealt with - the field of quantum computing, including quantum teleportation, quantum information, and cryptography, and the field of laser cooling, including Bose-Einstein condensation and atom interferometry.The resulting proceedings will be welcomed both as a good introductory book on quantum coherence and decoherence by newcomers to the field and as a reference book for experts in this dynamic area.
  • Progress in Optics

    • 1st Edition
    • Volume 40
    • English
    The publication of volume forty of Progress in Optics marks a significant milestone. Volume one was published in 1961, a year after the invention of the laser, an event which triggered a wealth of new and exciting developments. Many of them have been reported in the 234 review articles published in this series since its inception.The present volume contains six review articles on a variety of subjects of current research interests. The first is concerned with polarimetric optical fibers and sensors, and reviews the main efforts and achievements in this field within the last two decades.The second article presents a review of recent researches on digital optical computing. After introducing the basic concepts needed for understanding the developments in this field, some feasibility experiments as well as software studies are discussed.
  • Frontiers in Dusty Plasmas

    • 1st Edition
    • Y. Nakamura + 2 more
    • English
    The study of dusty plasmas is now in a vigorous state of development. Dust and plasma coexist in a vast variety of cosmic environments and their research received a major boost in the early 80's with the Voyager spacecraft observations of peculiar features in the Saturnian ring system (e.g. the radial spokes) which could not be explained purely in gravitational terms. In addition, dust streams were measured by the Galileo spacecraft in the Jovian magnetosphere and charged dust in the earth's mesosphere was detected by a direct rocket experiment. Since then the area has greatly expanded with dedicated laboratory experiments verifying aspects of basic physics of charged dust grains in plasmas.These proceedings contain invited and poster papers which were presented by scientists active in the field from more than twenty countries. The material contains new aspects of collective interactions in dusty plasmas. For example, discoveries of dust-acoustic Mach cones, dust ion-acoustic shocks, great dust voids, vortex formation, dust crystallization under microgravity, coexistence of positive negative dust grains in the mesosphere and dust in tokamaks. The more theoretical and simulation studies focus on dynamical and structural properties and kinetic theories of strongly coupled dusty plasmas, as well as on self-organizations and structures, in addition to identifying forces (viz. wakefields, electrostatic and dipolar interactions etc.), which are responsible for charged dust grain attraction and phase transitions.The resulting book is a valuable, state-of-the-art review of the field of dusty plasma physics and will be welcomed by both researchers and graduate students who want to keep up to date in this rapidly growing field.
  • Applications of Statistical Physics

    • 1st Edition
    • A. Gadomski + 3 more
    • English
    The field of statistical physics has undergone a spectacular development in recent years. The fundamentals of the subject have advanced dynamically with multidisciplinary approaches involving physicists, chemists and mathematicians. Equally spectacular has been the development of applications of statistical mechanics to shed light on a wide range of problems, many of them arising in fields quite distant from traditional physics disciplines. Recent applications range from such topics as oil recovery from porous rock to protein folding, DNA structure, morphogenesis and the cooperative behavior of living creatures. Concepts and methods of statistical physics have been applied successfully to "exotic" problems that seem to be far from physics, such as vehicular and pedestrial traffic, or economy and finance. This book presents not only the keynote invited talks, but a number of high quality, interesting, contributed communications from senior scientists and young students active in the field. Topics covered include DNA migration, wetting, chemical waves, granular media, molecular motors, biological pattern formation and motion, as well as practical problems such as heart diagnosis, internet traffic jamming, oil recovery and econophysics.
  • Generalized Multipole Techniques for Electromagnetic and Light Scattering

    • 1st Edition
    • Volume 4
    • T. Wriedt
    • English
    This book is an edited volume of nine papers covering the different variants of the generalized multipole techniques (GMT). The papers were presented at the recent 3rd Workshop on Electromagnetics and Light Scattering - Theory and Applications, which focused on current GMT methods. These include the multiple multipole method (MMP), the discrete sources method (DSM), Yasuura's method, method of auxiliary sources and null-field method with discrete sources. Each paper presents a full theoretical description as well as some applications of the method in electrical engineering and optics. It also includes both 2D and 3D methods and other applications developed in the former Soviet Union and Japan.
  • Fluid Power Dynamics

    • 1st Edition
    • R. Keith Mobley
    • English
    Fluid Power Dynamics is a 12-chapter book in two sections covering the basics of fluid power through hydraulic system components and troubleshooting. The second section covers pneumatics from basics through to troubleshooting.This is the latest book in a new series published by Butterworth-Heineman... in association with PLANT ENGINEERING magazine. PLANT ENGINEERING fills a unique information need for the men and women who operate and maintain industrial plants: It bridges the information gap between engineering education and practical application. As technology advances at increasingly faster rates, this information service is becoming more and more important. Since its first issue in 1947, PLANT ENGINEERING has stood as the leading problem-solving information source for America's industrial plant engineers, and this book series will effectively contribute to that resource and reputation.
  • Electroluminescence II

    • 1st Edition
    • Volume 65
    • English
    Since its inception in 1966, the series of numbered volumes known as Semiconductors and Semimetals has distinguished itself through the careful selection of well-known authors, editors, and contributors. The Willardson and Beer series, as it is widely known, has succeeded in producing numerous landmark volumes and chapters. Not only did many of these volumes make an impact at the time of their publication, but they continue to be well-cited years after their original release. Recently, Professor Eicke R. Weber of the University of California at Berkeley joined as a co-editor of the series. Professor Weber, a well-known expert in the field of semiconductor materials, will further contribute to continuing the series' tradition of publishing timely, highly relevant, and long-impacting volumes. Some of the recent volumes, such as Hydrogen in Semiconductors, Imperfections in III/V Materials, Epitaxial Microstructures, High-Speed Heterostructure Devices, Oxygen in Silicon, and others promise that this tradition will be maintained and even expanded.Reflecting the truly interdisciplinary nature of the field that the series covers, the volumes in Semiconductors and Semimetals have been and will continue to be of great interest to physicists, chemists, materials scientists, and device engineers in modern industry.
  • Electroluminescence I

    • 1st Edition
    • Volume 64
    • English
    The volume "Electroluminescence... for the first time covers (almost) all kinds of electroluminescence. In its broadest sense electroluminescence is the conversion of electric power into optical power - light. The way, in which this goal is accomplished, and the goal, the application itself, has varied over time. First reported in the scientific literature in 1936 by the French physicist G. Destriau, it was for quite some decades the glow of a powder embedded in a resin under the action of an alternating voltage. The dream of "cold light" for illumination was born in the 50s. Modern semiconductor technology, using p-n juntion, but not in silicon or germanium, but in GaAs and GaP, created in the 70s the tiny Light emitting Diodes. Today about 50 for every human being have been sold. They are everywhere for signaling and display of numbers and short texts. And they are at the verge of an era of solid state lighting, replacing gradually incandescent bulbs and fluorescent lamps. In the first half of 1999 several joint ventures between giants of the lighting industry and manufacturers of LEDs became known, including names as Philips, General Electric, Osram and Hewlett Packard, Emtron and Siemens, The reason, blue light emission of LEDs, for so long researched for unsuccessfully, has been achieved.Signaling, lighting will be the domains of LEDs in the next decades - a good start in the 21st millenium. But a the same time a paradigm shift in the display industry could come about. Dominated for the last 10 years by Liquid Crystal Displays (LCD), which are reflecting or transmitting light from extra light sources, self-emitting displays will challenge this dominance. Capable of handling very complex information by multiplexed addressing of millions of picture elements (pixels) in full color electroluminescence in the form of Organic LEDs and Thin Film Electroluminescence is gaining markets. Both technologies, much less matured than LED, incorporate much different physical features. The broad materials potential almost unexplored in both cases, they are good for surprises.The volume tries to present overviews ovber the 3 different technologies, covering in each case the mechanisms, the most important material properties, essential for the implementation of the working principles, the major applications and the system aspects. The reader will learn how the new long-life, maintenance free, power saving red traffic lights in the Silicon Valley function, and what the tail lights of his next car will be. The fascinating physics of polymer light emitters, eventually manufactured in a roll-to roll process, for cellular phones, or hand-held wireless computers, will become transparent. And why is it that up to now only sulfides can be used for the simplest design of displays capable of proven multiplex ratios of 1000? The comparison of the different electroluminescences... if this plural exists, will hopefully give experts of one of the fields, students of any of them, and application engineers new insights and ideas. Materials scientists and engineers will be caught by the comparison in analyzing what else one could provide to improve performance.General Description of Semiconductors and Semimetals:Since its inception in 1966, the series of numbered volumes known as Semiconductors and Semimetals has distinguished itself through the careful selection of well-known authors, editors, and contributors. The Willardson and Beer series, as it is widely known, has succeeded in producing numerous landmark volumes and chapters. Not only did many of these volumes make an impact at the time of their publication, but they continue to be well-cited years after their original release. Recently, Professor Eicke R. Weber of the University of California at Berkeley joined as a co-editor of the series. Professor Weber, a well-known expert in the field of semiconductor materials, will further contribute to continuing the series' tradition of publishing timely, highly relevant, and long-impacting volumes. Some of the recent volumes, such as Hydrogen in Semiconductors, Imperfections in III/V Materials, Epitaxial Microstructures, High-Speed Heterostructure Devices, Oxygen in Silicon, and others promise that this tradition will be maintained and even expanded.Reflecting the truly interdisciplinary nature of the field that the series covers, the volumes in Semiconductors and Semimetals have been and will continue to be of great interest to physicists, chemists, materials scientists, and device engineers in modern industry.
  • Intersubband Transitions in Quantum Wells: Physics and Device Applications

    • 1st Edition
    • Volume 62
    • English
    Since its inception in 1966, the series of numbered volumes known as Semiconductors and Semimetals has distinguished itself through the careful selection of well-known authors, editors, and contributors. The Willardson and Beer series, as it is widely known, has succeeded in producing numerous landmark volumes and chapters. Not only did many of these volumes make an impact at the time of their publication, but they continue to be well-cited years after their original release. Recently, Professor Eicke R. Weber of the University of California at Berkeley joined as a co-editor of the series. Professor Weber, a well-known expert in the field of semiconductor materials, will further contribute to continuing the series' tradition of publishing timely, highly relevant, and long-impacting volumes. Some of the recent volumes, such as Hydrogen in Semiconductors, Imperfections in III/V Materials, Epitaxial Microstructures, High-Speed Heterostructure Devices, Oxygen in Silicon, and others promise that this tradition will be maintained and even expanded.Reflecting the truly interdisciplinary nature of the field that the series covers, the volumes in Semiconductors and Semimetals have been and will continue to be of great interest to physicists, chemists, materials scientists, and device engineers in modern industry.