Skip to main content

Books in Physics

Physics titles offer comprehensive research and advancements across the fundamental and applied areas of physical science. From quantum mechanics and particle physics to astrophysics and materials science, these titles drive innovation and deepen understanding of the principles governing the universe. Essential for researchers, educators, and students, this collection supports scientific progress and practical applications across a diverse range of physics disciplines.

  • Surface Polaritons

    • 1st Edition
    • Volume 1
    • V. M. Agranovich
    • English
    Modern Problems in Condensed Matter Sciences, Volume I: Surface Polaritons: Electromagnetic Waves at Surfaces and Interfaces describes the basic properties of surface polaritons and the methods of generating these waves in the laboratory at frequencies of interest to condensed matter physicists. The selection first elaborates on surface phonon polaritons in dielectrics and semiconductors and surface exciton polaritons from the experimental viewpoint. Discussions focus on interface polaritons; surface vibrations in anisotropic crystals; experimental methods for the excitation and study of surface polaritons; and surface vibrations in isotropic crystals. The publication then ponders on surface electromagnetic wave propagation on metal surfaces; thermally stimulated emission of surface polaritons; and effects of the transition layer and spatial dispersion in the spectra of surface polaritons. The text takes a look at surface polaritons at metal surfaces and interfaces and resonance of transition layer excitations with surface polaritons. Topics include resonance of the film phonon with the substrate surface phonon polaritons; investigations of surface modifications in ultra-high vacuum; and use of surface plasma waves for the investigation of solid-liquid and solid-solid interfaces. The selection is a dependable reference for physicists and engineers wanting to conduct research on surface polaritons.
  • Physics of High Temperature Plasmas

    • 2nd Edition
    • George Schmidt
    • English
    Physics of High Temperature Plasmas, Second Edition focuses on plasma physics and the advances in this field. This book explores the experimental observations on linear waves and instabilities. Comprised of 11 chapters, this edition begins with an overview of heat transition as a result of the heating of a solid or liquid substance. This book then examines the behavior of plasmas, which has great significance for the understanding of our universe. This text also investigates the possible application of plasmas, such as the application of hot plasma as thermonuclear fuel. Other chapters discuss the laws of plasma physics, with emphasis on those phenomena that are relevant to the operation of thermonuclear machines. This text discusses as well the electromagnetic forces on an earthly scale, the quantum effects, particle collisions, and Maxwell’s equation. The final chapter of the book deals with the motion of charged particles. This book is intended for researchers engaged in plasma research and graduate students taking a course in plasma physics.
  • Metallurgical Coatings and Thin Films 1992

    • 1st Edition
    • G.E. McGuire + 2 more
    • English
    One of the increasingly important requirements for high technology materials is that they possess near-surface properties different to their bulk properties. Specific surface properties are generally achieved through the use of these films or coatings or by modifying the structure or composition of the near surface. This two-volume work contains 157 papers covering a wide range of topics involving films, coatings, and modified surfaces. All aspects of the development of deposition technologies are addressed including basic research, applied research, applications development and full scale industrial production. The work will be of interest to materials scientists, physicists, electronic, chemical and mechanical engineers, and chemists.
  • The Dielectric Function of Condensed Systems

    • 1st Edition
    • L.V. Keldysh + 2 more
    • English
    Much progress has been made in the understanding of the general properties of the dielectric function and in the calculation of this quantity for many classes of media. This volume gathers together the considerable information available and presents a detailed overview of the present status of the theory of electromagnetic response functions, whilst simultaneously covering a wide range of problems in its application to condensed matter physics.The following subjects are covered:- the dielectric function of the homogeneous electron gas, of crystalline systems, and of inhomogeneous matter; - electromagnetic fluctuations and molecular forces in condensed matter; - electrodynamics of superlattices.
  • Radiometry

    • 1st Edition
    • Frank Grum
    • English
    Optical Radiation Measurements, Volume 1: Radiometry is an introduction to the measurement of optical radiant energy, with emphasis on the principles and generally applicable methods of radiometry. Topics range from basic concepts of radiant energy and its transfer to the calibration of instrumentation. Blackbody radiation and sources of radiation are also discussed, along with detectors and spectral analyzers. Comprised of 10 chapters, this volume begins with an overview of the basic concepts and characteristics of radiometry as well as its applications such as photometry, photography, television, and vision research. The next chapters describe basic concepts such as radiation laws, terminology, and the transfer of radiant energy. The emphasis in these early chapters is on fundamentals. The major components of radiometric systems are then considered. The final three chapters focus on representative techniques, with particular reference to measurements of radiant power and radiant energy; reflectance, transmittance, and absorptance; and standards and calibration. This book is written for students, practitioners, and researchers in physics.
  • X-Ray Lasers

    • 1st Edition
    • Raymond C. Elton
    • English
    The first in its field, this book is both an introduction to x-ray lasers and a how-to guide for specialists. It provides new entrants and others interested in the field with a comprehensive overview and describes useful examples of analysis and experiments as background and guidance for researchers undertaking new laser designs. In one succinct volume, X-Ray Lasers collects the knowledge and experience gained in two decades of x-ray laser development and conveys the exciting challenges and possibilities still to come. The reader is first introduced to the technical challenges unique to the design and operation of lasers in the "vacuum" region of the spectrum, where the atmosphere is highly absorbent and optics are--at best--unconventional... A discussion of the basic principles for and limitations in achieving significant x-ray amplification, as well as descriptions of gain measurement techniques and instrumentation follows. Various approaches for pumping media to x-ray gain conditions are also analyzed, and descriptions of experimental progress are included wherever possible. The book concludes with a description and comparison with alternate sources and applications for an x-ray laser. This work is both an introduction to x-ray lasers and a how-to guide for specialists. It provides new entrants and others interested in the field with a comprehensive overview and describes useful analyses and experiments as guidance for researchers undertaking new laser designs.
  • Spectroscopy of Crystals Containing Rare Earth Ions

    • 1st Edition
    • Volume 21
    • A.A. Kaplyanskii + 1 more
    • English
    ``Spectroscopy of Crystals Containing Rare Earth Ions'' contains chapters on some key problems selected from a broad range of spectroscopic studies of RE-activated solids including both crystalline and glassy materials. Progress in crystal field theory is surveyed, an area which is basic to our understanding of the energy levels. The treatment of dynamical properties includes studies of coherence phenomena in isolated ions, energy transfer between ions and co-operative phenomena associated with ion-ion and ion-lattice interactions. In addition, the role of electron spins and nuclear spins is studied by light scattering and double resonance techniques. The presence of inhomogeneous broadening of spectral lines is observed and studied in many contexts, leading to new insights into general problems of the disordered state. Considerable attention is devoted to describing new experimental techniques whose development is of prime importance for progress in the spectroscopy of RE-activated solids. Many of these rely on the development and application of tunable lasers. At the moment this is a very active field of spectroscopy with more exciting developments likely to occur in the future.
  • Spin Waves and Magnetic Excitations

    • 1st Edition
    • Volume 22
    • English
    Modern Problems in Condensed Matter Sciences, Volume 22.1: Spin Waves and Magnetic Excitations, Part I focuses on the principles, methodologies, approaches, and reactions involved in spin waves and magnetic excitations, including, Brillouin-Mandelstam light scattering, optical magnetic excitations, and magnetic dielectrics. The selection first elaborates on spin waves in magnetic dielectrics current status of the theory and light scattering from spin waves. Discussions focus on magneto-optic effects and the mechanism of light scattering in magnets, Brillouin-Mandelstam light scattering, Raman scattering, Collinear Heisenberg ferromagnet, low-temperature phase transitions, and low-dimensional systems. The text then ponders on optical magnetic excitations, spin waves above the threshold of parametric excitations, and theory of spin excitations in rare earth systems. Topics include Hamiltonian for rare earth systems, parametric instability of spin waves in magnetic dielectrics, nonstationary processes in parametric excitation of spin waves, radiative decay of magnetic excitons, and mechanism of the generation of magnetic excitations by light. The book tackles 4f moments and their interaction with conduction electrons and neutron scattering studies of magnetic excitations in itinerant magnets, including magnetic excitations at finite and low temperatures, paramagnetic scattering, coupling to conduction electrons, and virtual magnetic excitations. The selection is highly recommended for researchers wanting to study spin waves and magnetic excitations.
  • Photosynthetic Reaction Center

    • 1st Edition
    • Johann Deisenhofer + 1 more
    • English
    The availability of the photosynthetic reaction center's structure at an atomic resolution of less than three angstroms has revolutionized research. This protein is the first integral membrane protein whose structure has been determined with such precision. Each volume of the Photosynthetic Reaction Center contains original research, methods, and reviews. Together, these volumes cover our current understanding of how photosynthesis converts light energy into stored chemical energy.Volume I describes the chemistry and biochemistry of photosynthesis, including green plant photosynthesis; it is devoted to the overall features and implications of the bacterial reaction center for green plant research. It features a new description of the structure of the reaction center, followed by coverage of the antenna and light functions. Volume I also details new manipulations of the reaction center including chemical and genetic modifications. It describes how the reaction center provides reducing power via electron transfer chemistry coupled to proton uptake and release; coupling of electron transport between the oxidized reaction center and the aqueous periplasm; and the general operation of membrane-bound proteins. Additionally, this volume contains five chapters detailing facets of green plant photosynthesis important for future research.
  • Advances in Magnetic Resonance

    • 1st Edition
    • John Waugh
    • English
    Advances in Magnetic Resonance focuses on the interdisciplinary field of magnetic resonance. Comprised of four chapters, this book discusses collective atomic motions in crystals as studied by nuclear magnetic resonance (NMR) spectroscopy and elaborates Mori's formalism as applied to the spin relaxation theory. It also discusses chemically induced dynamic nuclear polarization, magnetic shielding, and magnetic susceptibility. Students and physicists looking for a comprehensive source on magnetic resonance will find this book invaluable.